• Title/Summary/Keyword: SS concentration

Search Result 670, Processing Time 0.024 seconds

Initial Operating Condition of Membrane Bioreactor with PVDF Hollow Fiber and Permeate Reuse (PVDF 중공사막을 이용한 막생물반응기의 초기 운전조건 설정 및 여과수 재활용)

  • Shin, Choon-Hwan;Kang, Dong-Hyo;Park, Hae-Sik;Cho, Hyun-Kil
    • Clean Technology
    • /
    • v.16 no.1
    • /
    • pp.39-45
    • /
    • 2010
  • In this paper, 4 bundle modules of PVDF hollow fiber membrane from Woori Tech company (Korea) were manufactured in a treatment capacity of 10 ton/day. A membrane bioreactor (MBR) pilot plant was installed at Sooyoung Wastewater Treatment Plant in Busan. An alternating aeration process was selected to avoid the concentration profile of suspended solid (SS) in the MBR. For stable operation, raw wastewater with mixed liquor suspended solid (MLSS) of about 1,000 ppm, which was in-flowed from the aeration tank of the wastewater treatment plant, was fed and filtered through the pilot plant. Subsequently the pilot plant were washed three times with washing water: once with ethanol solution, once with a solution of 5% NaOCl, and finally with washing water. After the chemical washing, the remaining water in the MBR was fed into the pilot plant. As a result, the SS removal efficiency was found to be more than 99.9%. The amount of filtrate with the aeration tank influent decreased by 16%, compared with that from the initial conditions, giving rise to 30% increase in the suction pressure. These results were used to set up continuous operation conditions. The results from the continuous operation with influent MLSS of 1,900 mg/L showed that the SS removal efficiency was about 99.99% and that the amount of filtrate and the suction pressure were $42{\sim}52L/m^2$ and 16~20 cmHg, respectively, indicating stable operation of the pilot plant. However, for the reuse of wastewater, methods need to be sought to avoid growth of algae which affects the SS removal efficiency at inlet and outlet of the permeate tank.

Influence of Organic Acids Residual Concentration by the Change of F/M Ratio on Sludge Settleability in Advanced Sewage Treatment Processes (하.폐수 고도처리시 F/M비 변화에 따른 유기산 잔류 농도가 슬러지 침강성에 미치는 영향)

  • Park, Young-Ki;Kim, Young-Il;Kim, Sl-Ki
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.1
    • /
    • pp.42-47
    • /
    • 2006
  • The biological nutrient treatment is formed with repetition and rearrangement of anaerobic, anoxic and oxic tank. In this case, VFAs is generated in the anaerobic tank and the anoxic tank. The VFAs is an important factor for removal of nitrogen and phosphate and SVI. So, in this study I investigated to find a relationship among the generation rate of the VFAs according to the change of F/M ratio and the characteristic which can eliminate organic matter and nitrogen according to the change of residual concentration of the VFAs and the efficiency of the process and also SVI in wastewater treatment. $A^2/O$ process was used for wastewater treatment. F/M ratio was under the control of the change of MLSS concentration. When the F/M ratio was changed from 0.16 to 0.08 kg-BOD/kg-MLSS/day, the VFAs's production volume increased based on the reduction of F/M ratio in batch reaction. And the residual concentration of the VFAs decreased at first and then increased later. SVI and SS were high when F/M ratio was $0.16kg/kg{\cdot}d$ and showed stable status when F/M ratio decreased $0.11{\sim}0.13kg/kg{\cdot}d$. However, SVI and SS continuously increased with decrease of F/M ratio and were high at $0.08kg/kg{\cdot}d$. In the result of comparison between residual concentration of the VFAs and denitrification rate in anoxic tank, the less residual volume of the VFAs was in anoxic tank, the higher denitrification ratio became. The optimal residual-concentration of the VFAs considering SVI and removal efficiency of nitrogenwas $1.4{\sim}2.2mg/L$. At that time F/M ratio was $0.11{\sim}0.13$ kg-BOD/kg-MLSS/day.

Development of an Solid Separation System for Pig Slurry (돈 슬러리용 고형물 분리시스템 개발)

  • 김민균;김태일;최동윤;백광수;박진기;양창범;탁태영
    • Journal of Animal Environmental Science
    • /
    • v.8 no.1
    • /
    • pp.9-16
    • /
    • 2002
  • This study was conducted to develope the new solid separating system which can be efficiently and economically removed the solid parts in high pollutants concentration of pig slurry. The pollutants concentration, BOD$_{5}$ , COD and SS of the slurry used in this study was 15,990($\pm$2,389)mg/l, 20,004($\pm$5,512)mg/l and 26,486($\pm$5,935)mg/l, respectively. After removal of solid part in slurry, the pollutants concentration, BOD$_{5}$, COD and SS was change into 5,617($\pm$690)mg/l, 5,553($\pm$633)mg/land 1,456($\pm$341)mg/l, respectively in the Fixed biological membrane tank. The reduction of the pollutants concentration of suspend liquid through membrane will be allowed to greatly improve the water purification by an Activated sludge method. This separating system consisted of a temporary storage, a circulating tank and a Fixed Biological membrane tank. A temporary storage which has a draining system of screw type and an aeration device played a tremendous role in draining the solid by filled an aeration of 0.3 l/min. A Fixed Biological membrane tank of which a styrofoam filled in a 2/3 volume as a Biological media was fixed by a stainless steel net (pore size : 0.5mm) to separate the liquid layer of influx in them. The separating system efficiency factors were the speed of screw motor, cycle number of slurries in a circulating tank and moisture contents of solid effluent through the screw path. Although the pollutants concentration was very variable in temporary storage, the final concentration of $BOD_5$ and SS, except COD of the suspended liquid in a Fixed biological membrane were not different regardless of cycle number of a circulating tank. Moisture contents of effluent from temporary storage was 73% under the speed 1 ppm of screw motor and 62% under the 1/4rpm of it.

  • PDF

Treatment Level of a Pond System for Ecological Treatment and Recycling of Animal Excreta (생태적 축산폐수 처리 및 재활용 연못시스템의 폐수처리수준)

  • Yang, Hong-Mo;Rhee, Chong-Ouk
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.1
    • /
    • pp.70-75
    • /
    • 1998
  • A model of pond system is developed for treatment and recycling of excreta from twenty-five adult dairy cattle. It is composed of wastewater treatment ponds and small fish ponds. Those are three facultative ponds in series; primary-secondary-tertiary pond and these are designed to rear carps without feeding. A pit is constructed at the bottom of primary pond for efficient sludge sedimentation and effective methane fermentation. It is contrived to block into it the penetration of oxygen dissolved in the upper layer of pond water. The excreta from the cattle housed in stalls are diluted by water used for clearing them. The washed excreta flow into the pit. The average yearly $BOD_5$ concentration of influent is 398.7mg/l. That of the effluent from primary, secondary and tertiary pond of the system is 49.18, 27.9, and 19.8.mg/l respectively. Approximate 88, 93, and 95 % of BOD5 are removed in each pond. The mean yearly SS concentration of influent is 360.5 mg/l That of the effluent from each pond is 53.4, 45.7, and32.7mg/l respectively. Approximate 86, 88, and 91% of SS are removed in each pond. The $BOD_5$ concentration of secondary and tertiary pond can satisfy 30mg/l secondary treatment standard. The SS concentration of effluent from tertiary pond, however, is slightly greater than the standard, which results from activities of carps growing in the pond. The average yearly total nitrogen concentration of influent is 206.8mg/l and that of the effluent from each pond is 48.6, 30.8, and 21.0mg/l respectively. Approximate 74, 88, and 90% of total nitrogen are removed in each pond. The mean yearly total phosphorous concentration of influent is 20.7mg/l and that of the effluent from each pond is 5.3, 3.2, and 2.1mg/l respectively. Approximate 97, 98, and 99% of total phosphorous are removed in each pond. The high removal of nitrogen and phosphorous results from active growth of algae in the upper layer of pond water. Important pond design parameters for southern part of Korea -- areal loading of BOD5, liquid depth, hydraulic detention time, free board, and pond arrangement -- are taken up.

  • PDF

Water Ouantity/Quality Analysis and Pollutants Load Estimation in Sillicheon River, Jumunjin, Gangneung (강릉 신리천의 수량 수질 분석 및 오염부하량 추정)

  • Cho Hong Yeon;Kim Chang Il;Lee Dal Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.4
    • /
    • pp.196-205
    • /
    • 2004
  • Water qualities (WQ) were measured biweekly from April 2nd to October 29th, 2003 in Sillicheon flowing into the entrance of Jumunjin Harbour and daily water quantities (river discharges) were estimated by the TANK model which has been widely used to compute the runoff discharges in the ungauged watersheds. The spatial and temporal change patterns of the measured WQs were analysed in detail and the correlation between rainfall - WQ and river discharge - WQ were also analysed. From this results, it is found that the correlation coefficient between BOD concentration and rainfall is 0.75 and between the SS concentration and 2-days river discharge is 0.36. The correlation between the COD, TN, TP in the station of Silli Lower Bridge and rainfall runoff quantity was analysed as un-correlated items. As a consequence, the estimated BOD and SS pollutants loads are reliable and show good change patterns even though the accuracy of SS pollutants load is slightly low. The estimated COD, TN and TP pollutants loads, however, can be used only as the reference or averaged values. In order to analyse more accurately the temporal change patterns of these items, more-detailed researches considering the artificial effects and landuse patterns are highly required.

Temporal and Spatial Evaluation of Water Pollution Characteristics in Gohyeon Stream and Its Tributaries (고현천 및 유입지류의 수질오염 특성의 시·공간적 평가)

  • Kim, Sung-Jae
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.3
    • /
    • pp.235-247
    • /
    • 2012
  • BACKGROUND: Gohyeon Stream is the municipal eco-stream of 7.1km in total length which flows through the downtown area of Gohyeon in Geoje city, rising from the watershed of Mundong Water Fall. Gohyeon district in Geoje city has been a rapid growing area centering in Geoje city and then experienced an rapid increase in population. Large amounts of sewage pollutants have been spewed into Gohyeon Stream from its tributaries, due to the lack of sewer system. Gohyeon Stream is laced with unhealthy levels of fecal coliform (FC). Restoration of water quality in Gohyeon Stream is no less inevitable in behalf of its ecosystem and the citizen. In this study, the water quality of Gohyeon Stream and its tributaries was examined temporally and spatially, and their relationships were comparatively analyzed to give useful basic data applying to a restoration project of the water quality of Gohyeon Stream. METHODS AND RESULTS: The samples ware taken at 20 points in Gohyeon Stream and 19 points in its tributaries during the rainy and dry seasons, respectively, and examined on the parameters of pH, temperature, salinity, dissolved oxygen (DO), suspended solid (SS), biochemical oxygen demand (BOD), chemical oxygen demand (COD), dissolved inorganic nitrogen (DIN; $NH_3$-N, $NO_3$-N, $NO_2$-N), disolved inorganic phosphorus (DIP; $PO_4$-P) and FC. The data were analyzed using a comparative analysis and Pearson's correlation analysis among the parameters. During the rainy season, the concentration of SS was high in the upper region of Gohyeon Stream, and the concentrations of COD, DIN and DIP were low in the upper region and high in the middle and lower regions. During the dry season, the concentration of SS was low and the concentrations of COD, DIN, DIP and FC were high in all regions. The Pearson's correlation analyses showed that the relationships between DO and FC, COD and DIP, and DIN and FC during the rainy season as well as between DO and DIN, SS and FC, COD and DIP, and DIN and DIP during the dry season were significant. CONCLUSION: During the rainy season, the upper region of Gohyeon Stream flowed the high level of SS, the middle region the high level of nutrients due to an agricultural run-off, and the lower region the high level of nutrients due to a sewage inflow. During the dry season, the water quality of Gohyeon Stream was directly and sensitively influenced on the inflow of sewage from the tributaries.

Water Quality and Particle Size Distributions of Road Runoff in Storm Event (강우시 도로유출수 수질특성 및 입경분포)

  • Lee, Jun-Ho;Cho, Yong-Jin;Bang, Ki-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.777-784
    • /
    • 2005
  • The first flush phenomenon is defined as the initial period of road runoff during which the concentration of pollutants was significantly high. Road runoff contains significant loads of micro-particles, heavy metals and organic constituents. There were two major objectives of this study. The first objective was to characterize the road runoff. The second objective was to measure and evaluate particle sire distribution of the road runoff, Stormwater runoff was monitored on two sites of four lane road areas along with traffic volume. A total six storm events were monitored to characterize the road runoff. The quantity of road runoff and quality constituents, including chemical oxygen demand ($COD_{Cr}$), suspended solids(SS), total Kjeldahl nitrogen (TKN), ortho-phosphorus ($PO_4-P$), total phosphorus(TP), heavy metals and particle size distribution were analyzed. The results indicate that the concentration of SS, $COD_{Cr}$, TKN and TP ranges were $45{\sim}2,396\;mg/L$, $40{\sim}931\;mg/L$, $0.1{\sim}19.6\;mg/L$, and $0.2{\sim}25.1\;mg/L$, respectively. The results of the regression analysis between SS and the others constituents shows that $COD_{Cr}$, TP, Cu, Pb were highly correlated. And the results showed that the mean range of particle size and uniformity coefficient for road runoff were $6.7{\sim}23.4{\mu}$ and $6.4{\sim}10.2$, respectively.

Water Quality of a Rural Stream, the Hwapocheon Stream, and Its Analysis of Influence Factors (보와 습지가 있는 화포천의 수질 영향인자 분석)

  • Ahn, Chang Hyuk;Kwon, Jae Hyeong;Joo, Jin Chul;Song, Ho Myeon;Joh, Gyeongie
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.6
    • /
    • pp.421-429
    • /
    • 2012
  • This study was aimed to analyze the water quality characteristics of the Hwapocheon Stream and to be utilized in the further related research. Water in the upper stream became a dammed pool due to the existence of 14 weirs, and pollutants such as both sewage and irrigation water were introduced into the mainstream passing through farming settlements and agricultural land. For these reasons, filamentous cyanobacteria (Oscillatoria sp.) bloomed at the bottom of the dammed pool. Also in the midstream and downstream, tributaries with high pollutant concentrations [e.g., Comocheon (T3) and Yongdeokcheon (T8)] were inflowed, and had a negative impact on water quality of the mainstream, especially nitrogen and phosphorus. In the Hwapocheon Stream, dissolved oxygen (DO) decreased, and suspended solid (SS) increased toward the downstream. The result showed that hydraulic retention time, SS, COD, and concentration of $NH_4{^+}$ were important water quality factors of the Hwapocheon Stream. The high concentration of benthic organic matter and rich in attached algae in the core of Hwapo-wetland were expected to give impact on the water quality of the mainstream. In the spatial manner, water quality showed increasing trend in the weir zone, and it was constant or decreased trend in wetland. In the seasonal manner, the nutrient concentrations were high in the winter dry season, however, the organic matter concentrations were high in spring and summer. Generally, the concentrations of phytoplankton value were $40{\mu}g\;chl-{\alpha}/L$ or less in all reaches except for the high concentrations in the weir and wetland area in June.

Effects of Turbid Water on Fish Community: Case Studies of the Daegi Stream and the Bong-san Stream (탁수가 어류군집에 미치는 영향: 대기천 및 봉산천의 사례연구)

  • Kim, Jai-Ku;Choi, Jae-Seok;Jang, Young-Su;Lee, Kwang-Yeol;Kim, Bom-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.3
    • /
    • pp.459-467
    • /
    • 2007
  • The effects of turbid water on fish community was investigated in a clear reference stream (the Bongsan Steam) and a turbid stream (the Daegi Stream) located in the upstream region of the South Han River, Korea. The stress index (SI) of suspended solids (SS) were calculated during a rain event concentration by the equation SI=LN (SS${\times}$duration). EMC of SS was $1{\sim}13$ mg $L^{-1}$ in the clear stream with a mean SI of 5.2, while SS was $97{\sim}1,150$ mg $L^{-1}$ in the turbid stream with a mean SI of 10.3. Even though the number of species was not much different, the dominant species of the two steams were distinctly different. The reference stream was dominated by upstream species such as Rhynchocypris kumgangensis, Brachymystax lenok tsinlingensis, and Cottus poecilopus which are typical upstream community. Whereas the turbid streams was dominated by Rhynchocypris kumgangensis, Zacco koreanus, and Orthrias nudus which are representatives of middle reache community. Fish density was four times higher in the clear steam than the turbid stream. In the similarity analysis of fish communities the community of the turbid stream showed large dissimilarity with other communities in other streams of similar size. In conclusion, although turbidity might be at the sublethal concentration, fish communities are under stress in some turbid streams of Korea that is strong enough to induce community change. It can be an example of a chronic ecological toxicity of turbidity at the community level.

Comparison of NPS Pollution Characteristics between Snowmelt and Rainfall Runoff from a Highland Agricultural Watershed (고랭지 밭 유역에서 융설과 강우유출로 발생하는 비점오염원의 특성 비교)

  • Choi, Yong-Hun;Won, Chul-Hee;Park, Woon-Ji;Shin, Min-Hwan;Shin, Jae-Young;Lee, Su-In;Choi, Joong-Dae
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.4
    • /
    • pp.523-530
    • /
    • 2012
  • Runoff, NPS pollution load and flow-weighted mean concentration (FWMC) occurred by snowmelt and rainfall runoff were compared by a variance analysis. Snowmelt runoff ranged between 1,449 and $19,921m^3$. The peak snowmelt runoff was similar to the runoff that occurred by about 40mm/day rainfall. And average snowmelt runoff was not significantly different from the runoff that occurred by 25.5 mm/day rainfall. Average values of SS loads and FWMCs were 5,438 kg/day and 954.9 mg/L, respectively. SS loads and FWMCs were in the similar range with those that occurred by 39.0 mm/day and 53.0 mm/day rainfall, respectively. Daily SS and COD loads and FWMCs occurred by snowmelt and rainfall were analyzed not to be significantly different. Overall assessment led that the NPS pollution loads by snowmelt runoff had a similar characteristics with the loads by about 40 mm/day rainfall runoff. It was recommended that the agricultural fields in snowy region needs to managed not only for rainfall runoff but also snowmelt runoff for an effective water quality management.