• 제목/요약/키워드: SS 농도

검색결과 632건 처리시간 0.02초

함수비, 양생온도 및 흙의 입도가 Soil-Cement의 압축강도에 미치는 영향에 관한 연구(I) (Studies on the Effect of Water Content, Curing Temperature and Grain Size Distribution of Soils on Unconfined Compressive Strength of Soil-Cement Mixtures.)

  • 김재영;강신업
    • 한국농공학회지
    • /
    • 제19권1호
    • /
    • pp.4312-4322
    • /
    • 1977
  • In order to investigate the effect of the water content and the accelerated curing on the strength of the soil-cement mixtures, laboratory test of soil cement mixtures was performed at five levels of water content, four levels of accelerated curing temperatures, three levels of normal curing periods, and six levels of accelerated curing time. Also this study was carried out to investigate the effect of grain size distribution of 21 types of soils on the strength of soil-cement mixtures at four levels of cement content and three levels of curing time. The results are summarized as follows: 1. Optimum moisture content increased with increase of the cement content, but maximum dry density was changed ununiformly with cement content. Water content corresponding to the maximum strength was a little higher than the optimum moisture content along the increase of cement content. 2. In molding the specimens with the optimum moisture content, the maximum strength appeared at the wet side of the optimum moisture content. 3. According to increase of curing temperature as 30, 40, 50, and 60$^{\circ}C$, unconiiend compressive strength of soil-cement mixtures increased, the rate of increase at the early curing period was large, and approximately 120 hours was suifficient to harden soil-cement mixtures completely. 4. The strength of soil-cement mixtures at the curing temperature of 10$^{\circ}C$ decreased at the rate of 30 to 50 percent than at the curing temperature of 20$^{\circ}C$, and the strength of soil-cement mixtures at the curing temperature of 0$^{\circ}C$ increased a little with increase of curing time. 5. Although the strength of soil-cement mixtures seemed to be a little affected by the temperature difference between day time and night, it was recommended that reasonable working period was the duration from July to August of which average maximum temperature of Korea was approximately 30$^{\circ}C$. 6. Accelerated curing time corresponding to the normal curing time of 28-day was shorten with increase of curing temperature, also it was a little affected by the cement. Accelerated curing time that the strength of soil-cement mixtures for the cement of 9 percent and the curing temperature of 60was shorten with increase of curing temperature, also it was a little affected by the cement. Accelerated curing time that the strength of soil-cement mix- tures for the cement of 9 percent and the curing temperature of 60$^{\circ}C$ was 45 hours at the KY sample, 50 hours at the MH, 40 hours at the SS, and 34 hours at the JJ respectively. 7. Accelerated curing time was depended upon the grain size distribution of soil, it decreased with increase the percent passing of No. 200 sieve. 8. Relationship between the normal curing times and the accelerated curing times showed that there was a linear relationship between them, its slope decreased with increase of curing temperature. 9. The most reasonable soil of the soil-cement mixtures was the sandy loam which was a well graded soil. Assuming the base of road requiring 7-day strength of 21 kg/$\textrm{cm}^2$ being used, the soil-cement mixtures could be obtained with adding 6 percent of cement in such a sails S-7, S-8, S-9, S-10, S-11, S-12, S-13. 10. The regression equation between the 28-day and the 7-day strength was obtained as follow; q28=1.12q7,+6.5(r=0.96).

  • PDF

목편살수여상조를 이용한 축산뇨오수 처리와 목편여재의 물성 및 부착미생물 특성 (Treatment of Animal Wastewater Using Woodchip Trickling Filter System and Physical and Microbial Characteristics of Wood Chip Media)

  • 류종원
    • 한국축산시설환경학회지
    • /
    • 제17권2호
    • /
    • pp.71-80
    • /
    • 2011
  • 본 연구는 pilot 목편칩 살수여상 공정을 운전하면서 저농도 축산뇨오수 처리시에 오수 처리 특성과 부착 미생물의 특성에 관하여 연구하였다. 목편 살수여상 처리 효율과 목편담체의 부착미생물을 분석한 결과는 다음과 같다. 1. 목편담체는 표면구조가 거칠고 여러 형태의 공극을 볼 수 있었고, 목편압축강도는 섬유방향으로 기건상태에서 34.8 N/$mm^2$ 이었고, 비표면적은 0.4123 $m^2$/g, 세공용적은 0.0947 $cm^3$/g 이었다. 2. 목편담체의 단위면적당 부착미생물량은 1.67~5.43 mg/$cm^3$의 분포를 보였고, 제1 목편 살수여상조에서 평균 4,01 mg/$cm^3$, 제2 목편 살수여상조에서 평균 5.05 mg/$cm^3$로 조사되었다. 부착미생물의 건조밀도는 제1 목편 살수여상조에서 평균 0.275 g/$cm^3$, 제2 목편 살수여상조에서 평균 0.245 g/$cm^3$이었다. 목편담체에 부착된 미생물의 생물막 두께는 0.88~4.11 ${\mu}m$의 분포를 이루고, 제1 목편 살수여상조 평균 157 ${\mu}m$, 제2 목편 살수여상조 평균 2.59 ${\mu}m$의 결과를 얻었다. 3. 부착미생물의 균수 측정에서 호기성균은 제1 목편 살수여상조에서 평균 $1.9{\times}10^8$ CFU/ml, 제2 목편 살수여상조에서 평균 $2.6{\times}10^7$ CFU/ml ddjT으며, 혐기성균은 제1 목편 살수여상조에서 평균 $8.5{\times}10^6$ CFU/ml, 제2목편 살수여상조에서 평균 $5.3{\times}10^5$ CFU/ml로 조사되었다. 4. 살수여상 여과수의 $BOD_5$는 원수에서 비교하여 74.5% 제거되었으며 CODcr 제거효율은 51.5%로서 $BOD_5$ 보다 다소 낮았다. T-N 함량은 처리전 844 mg/$\ell$ 에서 살수여상처리 후 325.5 mg/$\ell$ 로 낮아졌다. T-P 함량은 처리전 127.7 mg/$\ell$ 에서 살수여상 처리 후 55.9로 낮아졌다. 질소, 인의 제거효율도 각각 61.4%, 56.2%를 나타내었다.