• Title/Summary/Keyword: SRG(Seeded Region Growing)

Search Result 8, Processing Time 0.024 seconds

AUTOMATIC IMAGE SEGMENTATION OF HIGH RESOLUTION REMOTE SENSING DATA BY COMBINING REGION AND EDGE INFORMATION

  • Byun, Young-Gi;Kim, Yong-II
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.72-75
    • /
    • 2008
  • Image segmentation techniques becoming increasingly important in the field of remote sensing image analysis in areas such as object oriented image classification. This paper presents a new method for image segmentation in High Resolution Remote Sensing Image based on Seeded Region Growing (SRG) and Edge Information. Firstly, multi-spectral edge detection was done using an entropy operator in pan-sharpened QuickBird imagery. Then, the initial seeds were automatically selected from the obtained edge map. After automatic selection of significant seeds, an initial segmentation was achieved by applying SRG. Finally the region merging process, using region adjacency graph (RAG), was carried out to get the final segmentation result. Experimental results demonstrated that the proposed method has good potential for application in the segmentation of high resolution satellite images.

  • PDF

User-steered balloon: Application to Thigh Muscle Segmentation of Visible Human (사용자 조정 풍선 : Visible Human의 다리 근육 분할의 적용)

  • Lee, Jeong-Ho;Kim, Dong-Sung;Kang, Heung-Sik
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.3
    • /
    • pp.266-274
    • /
    • 2000
  • Medical image segmentation, which is essential in diagnosis and 3D reconstruction, is performed manually in most applications to produce accurate results. However, manual segmentation requires lots of time to segment, and is difficult even for the same operator to reproduce the same segmentation results for a region. To overcome such limitations, we propose a convenient and accurate semiautomatic segmentation method. The proposed method initially receives several control points of an ROI(Region of Interest Region) from a human operator, and then finds a boundary composed of a minimum cost path connecting the control points, which is the Live-wire method. Next, the boundary is modified to overcome limitations of the Live-wire, such as a zig-zag boundary and erosion of an ROI. Finally, the region is segmented by SRG(Seeded Region Growing), where the modified boundary acts as a blockage to prevent leakage. The proposed User-steered balloon method can overcome not only the limitations of the Live-wire but also the leakage problem of the SRG. Segmentation results of thigh muscles of the Visible Human are presented.

  • PDF

Structural Vessel Segmentation Based on Cubic SRG in CT Image (CT영상에서의 Cubic SRG를 이용한 혈관의 구조적 분할 방법)

  • Kim, Yie-Bin;Kim, Dong-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.460-463
    • /
    • 2003
  • 의료영상에서의 혈관의 분할은 심혈관계질환의 진단 및 시술을 위한 3차원 가시화 및 가상내시경을 하기위한 필수 선행 단계로 이에 대한 연구가 많이 이루어 지고 있다. 조영제를 투여한 환자의 CT데이터에서 혈관분할의 가장 큰 문제점은 혈관의 밝기값이 뼈의 밝기값과 비슷하기 때문에 기존의 3차원 SRG방법으로 분할하는 경우 새나감의 문제를 가지고 있었다. 본 논문에서는 Cubic SRG라는 방법을 통해 기존의 3차원 SRG가 가지는 깔끔한 분할결과와 적응적인 특성등의 여러 장점을 그대로 취하며 Cubic이라는 구조적 특징을 이용하여 혈관을 빠르고 강인하게 분할하는 방법을 제안한다. Cubic SRG는 SRG가 픽셀단위의 성장을 통해 동질 영역을 분할하는 방법을 사용함에 반해 Cubic이라는 부피 단위를 지정하여 이를 SRG의 픽셀과 같이 퍼트리는 방식으로 기존의 3차원 SRG에 비해 2$\sim$5배 정도의 빠른 수행속도를 보이며 3차원 SRG의 장점인 적응적인 특성을 그대로 가질수 있도륵 구현되었다. 또한 복셀들을 Cubic이라는 단위로 묶음으로서 혈관의 구조적인 분석을 수행하여 혈관을 트리형태의 구조로 그룹화가 가능하기 때문에 혈관을 가지별로 분할하기에 용이한 특징을 가지도록 하였으며, 이를 통해 새나감이 시작된 가지를 찾아서 잘라내는 방법을 통하여 SRG의 가장 큰 문제인 새나감 방법을 효과적으로 해결하는 방법을 제시한다. 최종적으로 위의 방법을 기본으로 하여 적응형 임계값 기반의 분할 방법을 혼합하여 사용자가 지정한 두 지점사이의 혈관을 강인하게 분할할수 있도록 구현하였고, 제안한 방법으로 여러 환자의 CT데이터에 실험하여 좋은 결과를 얻을 수 있었다.

  • PDF

A Study on Automatic Tooth Root Segmentation For Dental CT Images (자동 치아뿌리 영역 검출 알고리즘에 관한 연구)

  • Shin, Seunghwan;Kim, Yoonho
    • The Journal of Society for e-Business Studies
    • /
    • v.19 no.4
    • /
    • pp.45-60
    • /
    • 2014
  • Dentist can obtain 3D anatomical information without distortion and information loss by using dental Computed Tomography scan images on line, and also can make the preoperative plan of implant placement or orthodontics. It is essential to segment individual tooth for making an accurate diagnosis. However, it is very difficult to distinguish the difference in the brightness between the dental and adjacent area. Especially, the root of a tooth is very elusive to automatically identify in dental CT images because jawbone normally adjoins the tooth. In the paper, we propose a method of automatically tooth region segmentation, which can identify the root of a tooth clearly. This algorithm separate the tooth from dental CT scan images by using Seeded Region Growing method on dental crown and by using Level-set method on dental root respectively. By using the proposed method, the results can be acquired average 19.2% better accuracy, compared to the result of the previous methods.

High Resolution Satellite Image Segmentation Algorithm Development Using Seed-based region growing (시드 기반 영역확장기법을 이용한 고해상도 위성영상 분할기법 개발)

  • Byun, Young-Gi;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.4
    • /
    • pp.421-430
    • /
    • 2010
  • Image segmentation technique is becoming increasingly important in the field of remote sensing image analysis in areas such as object oriented image classification to extract object regions of interest within images. This paper presents a new method for image segmentation in High Resolution Remote Sensing Image based on Improved Seeded Region Growing (ISRG) and Region merging. Firstly, multi-spectral edge detection was done using an entropy operator in pan-sharpened QuickBird imagery. Then, the initial seeds were automatically selected from the obtained multi-spectral edge map. After automatic selection of significant seeds, an initial segmentation was achieved by applying ISRG to consider spectral and edge information. Finally the region merging process, integrating region texture and spectral information, was carried out to get the final segmentation result. The accuracy assesment was done using the unsupervised objective evaluation method for evaluating the effectiveness of the proposed method. Experimental results demonstrated that the proposed method has good potential for application in the segmentation of high resolution satellite images.

A Fast Lower Extremity Vessel Segmentation Method for Large CT Data Sets Using 3-Dimensional Seeded Region Growing and Branch Classification

  • Kim, Dong-Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.5
    • /
    • pp.348-354
    • /
    • 2008
  • Segmenting vessels in lower extremity CT images is very difficult because of gray level variation, connection to bones, and their small sizes. Instead of segmenting vessels, we propose an approach that segments bones and subtracts them from the original CT images. The subtracted images can contain not only connected vessel structures but also isolated vessels, which are very difficult to detect using conventional vessel segmentation methods. The proposed method initially grows a 3-dimensional (3D) volume with a seeded region growing (SRG) using an adaptive threshold and then detects junctions and forked branches. The forked branches are classified into either bone branches or vessel branches based on appearance, shape, size change, and moving velocity of the branch. The final volume is re-grown by collecting connected bone branches. The algorithm has produced promising results for segmenting bone structures in several tens of vessel-enhanced CT image data sets of lower extremities.

Wave-front SRG for Vessel Segmentation (혈관분할을 위한 Wave-front SRG (Seeded Region Growing))

  • 남형인;김동성
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.275-278
    • /
    • 2001
  • 영상 분할은 임상에서의 진단과 분석 및 3차원 가시화하는데 있어 선행되어야 할 필수적인 과정이다. 본 논문에서는 심혈관계 영상의 분할을 위한 Wave-front SRG방법을 제안한다. 제안된 방법은 2차원 슬라이스 영상에서 사용자에 의한 씨앗점(seed front)을 입력으로 받아 그 이웃한 슬라이스들에 wave-front를 만들어 영역 성장법에 의해 3차원 volume을 확장시킨다. 이때 다음으로 성장할 wave-front voxel의 mean gradient 값을 사용하여 밝기값의 변화가 심한 심혈관계 영상을 분할하였으며, Wave-front voxel의 size를 계산하여 혈관분할 시 발생할 수 있는 작은 채널에서의 새나감을 방지하였다. 제안된 방법을 컴퓨터 단층촬영으로 얻은 심혈 관계 영상의 분할에 적용한 결과, 밝기값의 변화가 심한 심혈관계 영상을 성공적으로 분할했으며, 작의 채널의 새나감이 없이 분할을 수행하였다.

  • PDF

An Electronic Colon Cleansing Method using a Patient Colon CT Profile (환자 대장 CT 프로파일을 이용한 전자적 장세척 방법)

  • Kim, Han-Byul;Kim, Dong-Sung
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.8
    • /
    • pp.493-500
    • /
    • 2008
  • This paper proposes an electronic colon cleansing method using a patient CT profile for a virtual colonoscopy. The proposed method extracts the colon using cubic seeded region growing, and removes tagged materials adjacent to the colon. Residuals produced by a partial volume effect at the boundary of air-tagged material are deleted, and the removed soft tissue pixels due to a partial volume effect at the boundary of tagged material-soft tissue are recovered using a patient CT profile. The proposed method was applied to 16 virtual colonoscopy patient data sets, and produced promising results by a subjective evaluation of a radiologist and by a quantitative evaluation of a computer-aided diagnosis system.