• Title/Summary/Keyword: SRF(Solid Refuse Fuel)

Search Result 25, Processing Time 0.029 seconds

Sales Energy Promotion Efficiency and Policy Utilization Plan for Energy Facilities

  • KWON, Lee-Seung;LEE, Woo-Sik;KWON, Woo-Taeg
    • Journal of Distribution Science
    • /
    • v.18 no.9
    • /
    • pp.67-75
    • /
    • 2020
  • Purpose: The purpose of this study is to enhance sales promotion efficiency for using solid refuse fuel facilities. Renewable energy technology using Solid Refuse Fuel (SRF) is an economic efficiency technology that recovers waste by burning various wastes. A survey on the pollutants discharged from the solid fuels facilities was investigated so that the SRF facilities could be expanded, distributed and reflected in the policy. Research design, data, and methodology: In this study, 9 business sites using SRF and Bio-SRF as main raw materials were investigated for 2 years. The characteristics of target business sites such as the type of fuel used, combustion method, combustion temperature, daily fuel consumption and environmental prevention facilities were studied. Results: The average pollution & ammonia concentration of Bio-SRF facilities was found to be 88.15% higher than that of SRF facilities. But the average acetaldehyde concentration of SRF facilities was found to be 88.15% higher than that of Bio-SRF facilities. Conclusions: The main issue is how much electric power generation using combustible materials affects air pollution. The waste recycling law provides the standard value according to the fuel property, but there is a considerable gap with the mixed fuel. Therefore, for efficient utilization of facilities using solid fuel products, additional research is needed to improve the distribution structure of exhaust pollutants is needed.

The Economic Effects of the Expanding Manufacture and Utilization of Solid Refuse Fuel (SRF) Facilities in Korea : An Input-output Analysis (SRF 제조·활용 시설 확대의 경제적 파급효과 분석)

  • Cho, Yongcheol;Park, Soyeon;Yoo, Seunghoon
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.95-103
    • /
    • 2016
  • The government is trying to expanding the manufacture and utilization of solid refuse fuel (SRF) facilities in order to mitigate greenhouse gases reducing and eco-friendly waste-to-energy recovery. In this regard, this study attempts to look into the economic effects of expanding the manufacture and utilization of SRF facilities by applying an inter-industry analysis using a 2014 input-output table. Specifically, by applying the demand-driven model presents the results for the production-inducing effect, value-added creation effect, and employment-inducing effect. In particular, this study attempted to redefine for the SRF. In addition, it was accessed by exogenous around the manufacture and utilization of SRF sector. The results show that production-inducing effect and value-added creation effect of expanding the manufacture and utilization of SRF facilities for the investment of 1.0 won are estimated to be 1.9993 and 0.6747, respectively. The employment-inducing effect of one billion of investment in the expanding the manufacture and utilization of SRF facilities is computed to be 11.1982 persons. This information can be utilized in predicting the economic effects of the manufacture and utilization of SRF.

Estimation of Characteristics Treatment for Food Waste and Valuable as Solid Refuse Fuel (SRF) using Bio-drying Process (Bio-drying 공법을 이용한 음식물류 폐기물 분해 특성 평가 및 고형연료로서의 가치 평가)

  • Jeong, Cheoljin;Park, Seyong;Oh, Dooyoung;Jang, Eun-Suk;Song, Hyoungwoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.1
    • /
    • pp.23-33
    • /
    • 2017
  • In this study, water and organic treatment efficiency and operating characteristics (temperature, salinity effect) were evaluated when food waste with high water content was treated by Bio-dying method. In addition, the optimum conditions for producing pellets for evaluating the decomposition products as SRF(Solid Refuse Fuel) after Bio-drying and evaluating the use value of SRF as a solid fuel were analyzed. As a result, the temperature, $CO_2$ concentration, organic matter removal rate and weight reduction rate according to the daily dose were about 86% and 68% at the input of 2.4 kg/day. The optimal food waste input was estimated to be 2.4 kg/day. As a result of the pellet molding and produce, Pellets can be produced within 10~25% of raw material water content. It was judged that the water content of 25%, which showed the best quality results in terms of external shape maintenance and strength. The high calorific value of SRF of decomposition products after Bio-drying was more than 3,500 kcal/kg.

Preparation and characterization of SRF(Solid Refuse Fuel) using heavy oil fly ash (중유회를 활용한 고형연료 제조 및 특성)

  • Min, Hong;Cho, Sung-su;Seo, Minhye;Lee, Soo-Young;Choi, Changsik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.4
    • /
    • pp.83-90
    • /
    • 2019
  • In this study, the characteristics of the SRF (Solid Refuse Fuel) prepared by blending each of the additives (citrus peel, waste wood, coal) in the heavy oil fly ash, evaluating the heavy oil fly ash recyclability. Recycling SRFs were fabricated by pellet extruding method after blending the heavy oil fly ash and additives based on 30% moisture content. As a result, the formability of the SRFs was excellent under condition of blending heavy oil fly ash with coal or citrus peel and the highest calorific value was 4,274 kcal/kg at heavy oil fly ash mixed with coal. Therefore, the formability and calorific value were improved when the heavy oil fly ash was mixed with coal(20 wt%) at 30% moisture content. From these results, the applicability of SRFs with additives was confirmed by using the heavy oil fly ash from J thermal power plant.

A Study on Combustion Characteristics due to Changes in Solid Refuse Fuel Properties (고형연료제품 성상 변화에 따른 연소특성에 관한 연구)

  • Lim, Jong-Wan;Dong, Jong-In;Yoon, Kyoon-Duck;Shim, Jae-Young
    • Applied Chemistry for Engineering
    • /
    • v.26 no.6
    • /
    • pp.686-691
    • /
    • 2015
  • A basic research for utilizing solid refuse fuel (SRF) based on changing SRF properties (RDF, RPF) and types (pellet, fluff) is demonstrated. Physicochemical characteristics of SRF and also changes in thermal decomposition depending on combustion time and emission gas (NOx, CO, HCl, etc) concentration were investigated for applications to waste energy sources. In conclusion, RPF is easy to pelletize, and has better combustion efficiency, higher LHV, higher thermal reduction, and short combustion time because it is composed of plastic wastes homogeneously. Also, fluff type samples have better combustion efficiency, and short combustion time because it has wider exposed surface area for combustion. It can also save energy consumption for pelletizing.

Characteristics of Gasification for a Refused Plastic Fuel (플라스틱 고형 연료의 가스화 특성)

  • Chun, Young Nam;Lim, Mun Sup;Jo, Dae Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.11
    • /
    • pp.636-641
    • /
    • 2015
  • Waste energy conversion to SRF (Solid Refuse Fuel) has the effects not alternative fossil fuel usage but also the reduction of greenhouse gas. But the direct burning of the SRF including a plastic waste generates air pollution problem like soot, dioxin, etc. so that an application of pyrolysis and gasification treatment should be needed. The purpose of this study is to supply a basic thermal data of the pyrolysis gasification characteristics in the plastic-rich SRF which are needed for developing the novel pyrolyser or gasifier. To do so, a bench-scale test rig was newly engineered, and then experiments were achieved for the production characteristics of gas, tar, and char. While SRF sample, gasification air ratio, holding time changed as 2 g, 0.691, 32 min respectively, the $H_2$ 1.36%, $CH_4$ 2.18%, CO 1.88%, $Cl_2$ 15.9 ppm, HCl 6.4 ppm were composed. Also light tar benzene $4.03g/m^3$, naphthalene $0.39g/m^3$, anthracene $0.11g/m^3$, pyrene $0.06g/m^3$, gravimetric tar $18g/m^3$, and char 0.29 g was formed.

The Economic Analysis of A Solid Refuse Fuel (SRF) Project in the Urban Area (가연성 폐기물 고형연료(SRF) 사업의 경제성 분석)

  • Jang, EunMi;Cho, Yongsung
    • Journal of Climate Change Research
    • /
    • v.4 no.3
    • /
    • pp.245-254
    • /
    • 2013
  • Korea government promote renewable energy as the core of their energy matrix to break the dependence and reduce greenhouse effects. This study analyzes the economic assessment of Solid Refuse Fuel project in urban area, considering the marginal external costs of air pollution in this area. Assessment index defined as costs (i.e., construction cost, operation cost) and benefit (margin, external cost) data which is located in Sudokwon landfill site. The result indicates that cost-benefit analysis of SRF is calculated as 1.0. In addition, SRF project is very sensitive about electric power selling price, operating cost and labor cost according to inflation rates. This study shows that the sustainability of SRF project is required the government financial support like investment funds as well as policy support. Variability analysis of SRF economic assessment due to renewable energy can be used for making policies in various fields such as waste and public energy field.

A Study on the Optimal Management Option of the Disposal of Resources Found in Standard Plastic Garbage Bags (종량제봉투 내 폐자원에 대한 최적 처리방안 연구)

  • Park, Sang Jun;Kim, Eui Yong
    • Resources Recycling
    • /
    • v.23 no.5
    • /
    • pp.44-54
    • /
    • 2014
  • A standard plastic garbage bag which was discarded from Incheon Metropolitan City was composed of 4.5% recyclable resources (aluminum cans 0.2%, steel cans 2.5%, glass 1.8%), 92.5% resources with recoverable energy (papers 23.0%, plastics 15.5%, combustible etc. 54.0%) and 3.0% non-combustible etc. Recycling is more effective than landfilling for aluminum cans, steel cans, and glass. The energy recovery process using solid refuse fuel (SRF) is more effective than incineration for papers and plastics. Incineration is more effective than recycling for combustible etc. 2,068,948 Million Btu of total energy savings and 21,008 $MTCO_2E$ of total GHG reductions were obtained by the application of the proposed scheme. The total energy savings were equivalent to an economic benefit of 422 billion won per year. The total GHG reductions were equivalent to a GHG benefit of 4,119 passenger cars not running per year. The lower calorific value of the combustible materials was obtained to be 1,936 kcal/kg of papers, 5,079 kcal/kg of plastics and 2,462 kcal/kg of combustible other resources, respectively. If papers and plastics are properly mixed, the mixture can be used as SRF. The lower calorific value of combustible other resources does not meet the quality criteria for refuse derived fuel, therefore its components are inappropriate to used as solid refuse fuel.

Effect of Household Garbage on the SRF Biomass - Based on the B city (가정 폐기물이 SRF 바이오매스에 미치는 영향 - B시를 중심으로)

  • Park, Jae Woo;Lee, Seung-Won
    • Journal of Environmental Science International
    • /
    • v.30 no.6
    • /
    • pp.455-463
    • /
    • 2021
  • This study investigated the biomass content of fluff type SRF(Solid refuse fuel) operated in B city according to the physical composition. As a result of analyzing the physical composition of SRF, it was investigated that papers 25.2%, fiber 15.1%, vinyl·plastics 42.6%, woods 9.4%, rubbers 1.5%, diapers 3.2% and incombustibles 3.0%. The average of ash and combustible content of SRF was 10.5% and 89.5%, and the higher the proportion of paper and wood, the lower proportion of ash. In addition, the biomass of SRF is 24.9%~58.0%, with an average of 42.6%.

Improvement of Acid Digestion Method by Microwave for Hazardous Heavy Metal Analysis of Solid Refuse Fuel (고형연료제품의 유해중금속 분석을 위한 마이크로파 산 분해법의 개선)

  • Yang, Won-Seok;Park, Ho-Yeun;Kang, Jun-Gu;Lee, Young-Jin;Lee, Young-Kee;Yoon, Young-Wook;Jeon, Tae-Wan
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.7
    • /
    • pp.616-626
    • /
    • 2018
  • The quality standards of solid refuse fuel (SRF) define the values for 12 physico-chemical properties, including moisture, lower heating value, and metal compounds, according to Article 20 of the Enforcement Rules of the Act on Resource Saving and Recycling Promotion. These parameters are evaluated via various SRF Quality Test Methods, but problems related to the heavy metal content have been observed in the microwave acid digestion method. Therefore, these methods and their applicability need improvement. In this study, the appropriate testing conditions were derived by varying the parameters of microwave acid digestion, such as microwave power and pre-treatment time. The pre-treatment of SRF as a function of the microwave power revealed an incomplete decomposition of the sample at 600 W, and the heavy metal content analysis was difficult to perform under 9 mL of nitric acid and 3 mL of hydrochloric acid. The experiments with the reference materials under nitric acid at 600 W lasted 30 minutes, and 1,000 W for 20 or 30 minutes were considered optimal conditions. The results confirmed that a mixture of SRF and an acid would take about 20 minutes to reach $180^{\circ}C$, requiring at least 30 minutes of pre-treatment. The accuracy was within 30% of the standard deviation, with a precision of 70 ~ 130% of the heavy metal recovery rate. By applying these conditions to SRF, the results for each condition were not significantly different and the heavy metal standards for As, Pb, Cd, and Cr were satisfied.