• Title/Summary/Keyword: SRES(Special Report on Emissions Scenarios)

Search Result 18, Processing Time 0.023 seconds

The expectation of future climate change in relation to buildings and renewable energy (건물 및 재생에너지에 관한 미래의 기후변화 예측)

  • Lee, Kwan-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.1
    • /
    • pp.57-64
    • /
    • 2008
  • According to the Fourth Assessment Report of Intergovernmental Panel on Climate Change(IPCC) Working Group III, climate change is already in progress around the world, and it is necessary to execute mitigation in order to minimize adverse impacts. This paper suggests future climate change needs, employing IPCC Special Report on Emissions Scenarios(SRES) to predict temperature rises over the next 100 years. This information can be used to develop sustainable architecture applications for energy efficient buildings and renewable energy. Such climate changes could also affected the resent supplies of renewable energy sources. This paper discusses one recent Fourth Assessment Report of IPPC (Mitigation of Climate Change) and the Hadley Centre climate simulation of relevant data series for South Korea.

Impact of climate change scenarios in the Building Sector (기후변화 시나리오에 따른 건물부분의 영향)

  • Lee, Kwan-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.2
    • /
    • pp.64-69
    • /
    • 2013
  • According to the Fourth Assessment Report of Intergovernmental Panel on Climate Change(IPCC) Working Group III, climate change is already in progress around the world, and it is necessary to execute mitigation in order to minimize adverse impacts. This paper suggests future climate change needs, employing IPCC Special Report on Emissions Scenarios(SRES) to predict temperature rises over the next 100 years. This information can be used to develop sustainable architecture applications for energy efficient buildings and renewable energy. Such climate changes could also affected the present supplies of renewable energy sources. This paper discusses one recent Fourth Assessment Report of IPCC (Mitigation of Climate Change) and the Hadley Centre climate simulation of relevant data series for South Korea. Result of this research may improve consistency and reliability of simulation weather data or climate change in order to take advantage of SRES and PRECIS QUMP. It is expected that these calculated test reference years will be useful to the designers of solar energy systems, as well as those who need daily solar radiation data for South Korea. Also, those results may contribute zero carbon and design of sustainable architecture establishing future typical weather data that should be gone ahead to energy efficient building design using renewable energy systems.

Uncertainties estimation of AOGCM-based climate scenarios for impact assessment on water resources (수자원 영향평가를 위한 기후변화 시나리오의 불확실성 평가)

  • Park E-Hyung;Im Eun-Soon;Kwon Won-Tae;Lee Eun-Jeong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.138-142
    • /
    • 2005
  • The change of precipitation and temperature due to the global. warming eventually caused the variation of water availability in terms of potential evapotranspiration, soil moisture, and runoff. In this reason national long-term water resource planning should be considered the effect of climate change. Study of AOGCM-based scenario to proposed the plausible future states of the climate system has become increasingly important for hydrological impact assessment. Future climate changes over East Asia are projected from the coupled atmosphere-ocean general circulation model (AOGCM) simulations based on Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 and B2 scenarios using multi-model ensembles (MMEs) method (Min et al. 2004). MME method is used to reduce the uncertainty of individual models. However, the uncertainty increases are larger over the small area than the large area. It is demonstrated that the temperature increases is larger over continental area than oceanic area in the 21st century.

  • PDF

Simulations of Summertime Surface Ozone Over the Korean Peninsula Under IPCC SRES A2 and B1 Scenarios (IPCC SRES A2와 B1 시나리오에 따른 한반도지역의 여름철 지표 오존의 수치모의)

  • Hong, Sung-Chul;Choi, Jin-Young;Song, Chang-Keun;Hong, You-Deog;Lee, Suk-Jo;Lee, Jae-Bum
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.3
    • /
    • pp.251-263
    • /
    • 2013
  • The surface ozone concentrations changes were investigated in response to climate change over the Korean peninsula for summertime using the global-regional one way coupled Integrated Climate and Air quality Modeling System (ICAMS). The future simulations were conducted under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 and B1 scenarios. The modeling system was applied for four 10-year simulations: 1996~2005 as a present-day case, 2016~2025, 2046~2055, and 2091~2100 as future cases. The results in this study showed that the mean surface ozone concentrations increased up to 0.5~3.3 ppb under the A2, but decreased by 0.1~10.9 ppb under the B1 for the future, respectively. However, its increases were lower than an increase of the average daily maximum 8-hour (DM8H) surface ozone concentrations which was projected to increase by 2.8~6.5 ppb under the A2. The DM8H surface ozone concentrations seem to be therefore far more affected by the climate and emissions changes than mean values. The probability of exceeding 60 ppb was projected to increase by 6~19% under the A2. In the case of B1, its changes were presented with an increase of 2.9% in the 2020s but no occurrence in the 2100s due to the effect of the reduced emissions. Future projection on surface ozone concentrations was generally shown to have almost the similar trend as the emissions of $NO_x$ and NMVOC.

An Uncertainty Assessment of AOGCM and Future Projection over East Asia (동아시아 지역의 AOGCM 불확실성 평가 및 미래기후전망)

  • Kim, Min-Ji;Shin, Jin-Ho;Lee, Hyo-Shin;Kwon, Won-Tae
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.507-524
    • /
    • 2008
  • In this paper, future climate changes over East Asia($20^{\circ}{\sim}50^{\circ}N$, $100^{\circ}{\sim}150^{\circ}E$) are projected by anthropogenic forcing of greenhouse gases and aerosols using coupled atmosphere-ocean general circulation model (AOGCM) simulations based on Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) B1, A1B and A2 scenarios. Before projection future climate, model performance is assessed by the $20^{th}$ Century (20C3M) experiment with bias, root Mean Square Error (RMSE), ratio of standard deviation, Taylor diagram analysis. The result of examination of the seasonal uncertainty of T2m and PCP shows that cold bias, lowered than that of observation, of T2m and wet bias, larger than that of observation, of PCP are found over East Asia. The largest wet bias is found in winter and the largest cold bias is found in summer. The RMSE of temperature in the annual mean increases and this trend happens in winter, too. That is, higher resolution model shows generally better performances in simulation T2m and PCP. Based on IPCC SRES scenarios, East Asia will experience warmer and wetter climate in the coming $21^{st}$ century. It is predict the T2m increase in East Asia is larger than global mean temperature. As the latitude goes high, the warming over the continents of East Asia showed much more increase than that over the ocean. An enhanced land-sea contrast is proposed as a possible mechanism of the intensified Asian summer monsoon. But, the inter-model variability in PCP changes is large.

Land Cover Change Prediction Based on Climate Change Scenarios using CLUE Model (CLUE 모형과 기후변화 시나리오를 이용한 토지피복 변화 예측)

  • Oh, Yun-Gyeong;Choi, Jin-Yong;Lee, Sang-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1546-1550
    • /
    • 2010
  • 최근 IPCC에서는 제 4차 평가보고서를 통해 대기 속 이산화탄소 농도가 산업혁명 이전에 비해 2005년 기준 약 35% 증가하였으며, 지난 1세기 동안 지구 평균기온이 $0.74^{\circ}C$ 증가하였다고 발표하였다. 이러한 기후변화로 인해 야기된 홍수, 가뭄, 사막화, 생태계 혼란 등의 심각한 환경문제를 해결하고자 UN에서는 1992년 세계 환경 개발에 관한 리우 데 자네이로 정상회의에서 기후변화에 관한 기본협약을 체결하여 국제적인 대책을 마련하기 위해 노력하고 있다. 이 중 토지이용변화에 관한 연구는 기후변화를 야기하는 주요한 요인에 관한 연구로서 온실가스 증가와 생물종다양성, 수문학적인 변화 등을 파악하는 데 활용되고 있다. 따라서 기후변화에 대응하고 지속가능한 개발 정책을 수립하기 위해서는 다양한 경제학적, 사회학적인 시나리오 조건에서 미래의 토지이용변화 양상을 살펴볼 필요가 있다. 이에 본 연구에서는 토지이용변화에 영향을 미치는 사회 경제적 요인과 과거의 토지이용변화 패턴을 고려하여 토지이용변화를 모델링 할 수 있는 CLUE(The Conversion of Land Use and its Effects) 모델을 이용하여 SRES(Special Report on Emissions Scenarios) 시나리오에 기초한 토지피복 변화를 살펴보고자 한다. 이는 향후 기후변화를 최소화하기위한 개발전략 수립에 있어서 정책방향을 결정하는 데 기초자료로 활용될 수 있을 것이다.

  • PDF

Prediction of Land-cover Change Based on Climate Change Scenarios and Regional Characteristics using Cluster Analysis (기후변화 시나리오에 따른 미래 토지피복변화 예측 및 군집분석을 이용한 지역 특성 분석)

  • Oh, Yun-Gyeong;Choi, Jin-Yong;Yoo, Seung-Hwan;Lee, Sang-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.31-41
    • /
    • 2011
  • This study was conducted to predict future land-cover changes under climate change scenarios and to cluster analysis of regional land-cover characteristics. To simulate the future land-cover according to climate change scenarios - A1B, A2, and B1 of the Special Report on Emissions Scenarios (SRES), Dyna-CLUE (Conversion of Land Use Change and its Effects) was applied for modeling of competition among land-use types in relation with socioeconomic and biophysical driving factors. Gyeonggi-do were selected as study areas. The simulation results from 2010 to 2040 suggested future land-cover changes under the scenario conditions. All scenarios resulted in a gradual decrease in paddy area, while upland area continuously increased. A1B scenario showed the highest increase in built-up area, but all scenarios showed only slight changes in forest area. As a result of cluster analysis with the land-cover component scores, 31 si/gun in Gyeonggi-do were classified into three clusters. This approach is expected to be useful for evaluating and simulating land-use changes in relation to development constraints and scenarios. The results could be used as fundamental basis for providing policy direction by considering regional land-cover characteristics.

Impact of Climate Change on Paddy Water Storage During Storm Periods (기후변화에 따른 홍수기 논의 저류능 변화 분석)

  • Park, Geun-Ae;Park, Jong-Yoon;Shin, Hyung-Jin;Park, Min-Ji;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.6
    • /
    • pp.27-37
    • /
    • 2010
  • The effect of potential future climate change on the storage rate of paddy field during storm periods (June - September) was assessed using the daily paddy water balance model. The CCCma CGCM2 data by SRES (special report on emissions scenarios) A2 and B2 scenarios of the IPCC (intergovernmental panel on climate change) was used to assess the future potential climate change. The future weather data for the year 2020s, 2050s and 2080s was downscaled by Change Factor method through bias-correction using 30 years weather data. The future (2020s, 2050s and 2080s) rainfall, storage and irrigation of paddy field, runoff in paddy levee and ponding depth were analyzed for the A2 and B2 climate change scenarios based on a base year (2005). The future irrigation change of paddy field was projected to increase by decrease in rainfall. So, runoff change in paddy levee was decrease slightly, future storage change of paddy was projected to increase.

Projection of Circum-Arctic Features Under Climate Change (미래 기후 변화 시나리오에 따른 환북극의 변화)

  • Lee, Ji Yeon;Cho, Mee-Hyun;Koh, Youngdae;Kim, Baek-Min;Jeong, Jee-Hoon
    • Atmosphere
    • /
    • v.28 no.4
    • /
    • pp.393-402
    • /
    • 2018
  • This study investigated future changes in the Arctic permafrost features and related biogeochemical alterations under global warming. The Community Land Model (CLM) with biogeochemistry (BGC) was run for the period 2005 to 2099 with projected future climate based on the Special Report on Emissions Scenarios (SRES) A2 scenario. Under global warming, over the Arctic land except for the permafrost region, the rise in soil temperature led to an increase in soil liquid and decrease in soil ice. Also, the Arctic ground obtained carbon dioxide from the atmosphere due to the increase in photosynthesis of vegetation. On the other hand, over the permafrost region, the microbial respiration was increased due to thawing permafrost, resulting in increased carbon dioxide emissions. Methane emissions associated with total water storage have increased over most of Arctic land, especially in the permafrost region. Methane releases were predicted to be greatly increased especially near the rivers and lakes associated with an increased chance of flooding. In conclusion, at the end of $21^{st}$ century, except for permafrost region, the Arctic ground is projected to be the sink of carbon dioxide, and only permafrost region the source of carbon dioxide. This study suggests that thawing permafrost can further to accelerate global warming significantly.

A Review of Regional Climate Change in East-Asia and the Korean Peninsula Based on Global and Regional Climate Modeling Researches (전구 및 지역기후 모델 결과에 근거한 동아시아 및 한반도 지역기후 변화 전망 연구 소개 및 고찰)

  • Hong, Song You;Kwon, Won Tae;Chung, Il Ung;Baek, Hee Jeong;Byun, Young Hwa;Cha, Dong Hyun
    • Journal of Climate Change Research
    • /
    • v.2 no.4
    • /
    • pp.269-281
    • /
    • 2011
  • In this review, numerical model results from global and regional climate models are introduced to regional detailed climate changes over East Asia and Korea. In particular, regional climate change scenarios in this region, which are created by several research groups in Korea based on Special Report on Emissions Scenarios (SRES) of IPCC 4th assessment report are introduced and characteristics of the scenarios are investigated. Despite slight differences in intensity, all scenarios reveal prominent warming over the Korean peninsula in future climate. Changes in precipitation amount vary with given scenarios and periods, but the frequency and intensity of heavy precipitation generally tend to increase in all scenarios. South Korea except for mountainous regions is expected to change into subtropical climate in future, which accompanies distinct changes in ecosystems and seasons.