• 제목/요약/키워드: SRAO

검색결과 28건 처리시간 0.033초

GPS를 이용한 서울대학교 전파천문대의 WGS84 좌표 결정 (The Determination of WGS84 coordinates for Seoul National University Radio Astronomy Observatory)

  • 조정호;박필호;박종욱;홍승수;구본철
    • 천문학논총
    • /
    • 제15권1호
    • /
    • pp.31-34
    • /
    • 2000
  • We determined the precise three dimensional WGS84 Coordinates and the sea level height of Seoul Radio Astronomy Observatory (SRAO). In this study, we performed the simultaneous GPS observations at SRAO and Seoul GPS Reference Station(SGRS) of Korea Astronomy Observatory(KAO) for 3.5 hours from 17KST on October 27, 1999. We employed two different antennas, i.e., chokering antenna at SGRS of KAO and L1/L2 compact with groundplane antenna at SRAO. But we employed same type of receivers, i.e., Trimble 4000SSI at both observing places. The observed data were processed by GPSURVEY 2.30 software of Trimble with L1/L2 ION Free technique and broadcasting ephemeris of GPS Satellites because of very short baseline between SGRS of KAO and SRAO. We determined WGS84 latitude, longitude, height and the sea level height of SRAO with $37^{\circ}\;27'\;15.'\;6846N\pm0.'\;0004,\;126^{\circ}\;57'\;19.'\;0727E\pm0.'\;0002,\;204.89m\pm0.02m,\;181.38m\pm0.17m$, respectively.

  • PDF

서울전파천문대(SRAO) 6M 망원경의 ON-THE-FLY 관측 시스템 구축 (DEVELOPMENT OF ON-THE-FLY(OTF) OBSERVATION METHOD FOR SEOUL RADIO ASTRONOMY OBSERVATORY(SRAO) 6-METER TELESCOPE)

  • 강현우;변도영;박용선
    • 천문학논총
    • /
    • 제20권1호
    • /
    • pp.73-83
    • /
    • 2005
  • On-The-Fly (OTF) observation method is developed for the efficient use of 6 M radio telescope at Seoul Radio Astronomy Observatory (SRAO). This technique, in which data and information of antenna position are recorded synchronously while driving a telescope regularly and rapidly across a field, provides more efficient use of telescope time and better calibration of the acquired data than the traditional point-to-point observation method does. For the realization of the method, we (1) added RT-Linux modules to the existing operating system, (2) replaced digital voltmeter with voltage-to-frequency converter, and (3) modified many SRAO observation programs. By observing Moon and G78.2+2.7 using this method and comparing them with previous observations, we verify the successful operation and efficiency of the OTF observation mode.

SRAO Dual-Pole System Software Development

  • 강현우;김창희;양희수;박용선
    • 천문학회보
    • /
    • 제35권1호
    • /
    • pp.44.2-44.2
    • /
    • 2010
  • Recently, SRAO has upgraded from one-pole system software to dual-pole system software. We present the new dual-pole system software and how it works in detail. Dual-pole observation is enabled with just some commands. To do so, backend-system controls two different hardwares, proceeds two different data and make two files at one observation.

  • PDF

L1014 분자운 핵에 대한 SRAO 6m 망원경을 이용한 분자선 관측연구 (MOLECULAR LINE STUDY OF L1014 WITH SRAO 6M TELESCOPE)

  • 이창원
    • 천문학논총
    • /
    • 제20권1호
    • /
    • pp.1-5
    • /
    • 2005
  • We report molecular line observations of CO(1-0), $^{13}CO(1-0)$, CS(2-1), and HCN(1-0) with SRAO 6m telescope toward L1014-IRS which is thought to be a very faint infrared source embedded in previously known 'starless' core L1014. The CO(1-0) observations find several components with different velocities along the line of sight of L1014, $4km\;s^{-1}$ and between $40{\sim}50km\;s^{-1}$. We find a parsec scale CO molecular outflow at the $4km\;s^{-1}$ component for the first time the direction of which is coincident with that of the small scale (${\sim}500pc$) outflow previously found. Although the observation is not covered for whole area of the outflow, the size of the molecular outflow seems not very inconsistent with the expected age of L1014-IRS. More accurate size and shape of the molecular outflow from L1014-IRS will be determined from the full coverage mapping in CO over the outflow region in very near future.

RENOVATION OF SEOUL RADIO ASTRONOMY OBSERVATORY AND ITS FIRST MILLIMETER VLBI OBSERVATIONS

  • Naeun, Shin;Yong-Sun, Park;Do-Young, Byun;Jinguk, Seo;Dongkok, Kim;Cheulhong, Min;Hyunwoo, Kang;Keiichi, Asada;Wen-Ping, Lo;Sascha, Trippe
    • 천문학회지
    • /
    • 제55권6호
    • /
    • pp.207-213
    • /
    • 2022
  • The Seoul Radio Astronomy Observatory (SRAO) operates a 6.1-meter radio telescope on the Gwanak campus of Seoul National University. We present the efforts to reform SRAO to a Very Long Baseline Interferometry (VLBI) station, motivated by recent achievements by millimeter interferometer networks such as Event Horizon Telescope, East Asia VLBI Network, and Korean VLBI Network (KVN). For this goal, we installed a receiver that had been used in the Combined Array for Research in Millimeter-wave Astronomy and a digital backend, including an H-maser clock. The existing hardware and software were also revised, which had been dedicated only to single-dish operations. After several years of preparations and test observations in 1 and 3-millimeter bands, a fringe was successfully detected toward 3C 84 in 86 GHz in June 2022 for a baseline between SRAO and KVN Ulsan station separated by 300 km. Thanks to the dual frequency operation of the receiver, the VLBI observations will soon be extended to the 1 mm band and verify the frequency phase referencing technique between 1 and 3-millimeter bands.