• Title/Summary/Keyword: SR-XRF

Search Result 22, Processing Time 0.022 seconds

Measurement of Insoluble Mineral Particles in a Saturated Atmosphere

  • Ma, Chang-Jin;Choi, Sung-Boo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.E1
    • /
    • pp.44-53
    • /
    • 2008
  • This study was undertaken to measure the properties of individual mineral particles in an artificially saturated atmosphere at a vertical extinct mine with 430 m height. By synchrotron radiation X-ray fluorescence (SR-XRF) microprobe analysis, it was possible to determine the elemental composition of residual insoluble particles on individual cloud droplet replicas formed on the Collodion film. The XRF visualized elemental maps enabled us not only to presume the chemical mixing state of particles retained in cloud droplet, but also to estimate their source. Details about the individual mineral particles captured by artificial cloud droplets should be helpful to understand about the removal characteristics of dust particles such as interaction with clouds. Nearly all individual particles captured in cloud droplets are strongly enriched in Fe. Mass of Fe is ranged between 41 fg and 360 fg with average 112 fg. There is a good agreement between single particle analysis by SR-XRF and bulk particle analysis by PIXE.

Photoluminescence of $SrTiO_3$: $Pr^{3+}$,$Ga^{3+}$ ($SrTiO_3$: $Pr^{3+}$,$Ga^{3+}$의 발광특성)

  • 변재동;이용제;장보윤;이현덕;유영문;류선윤
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.8
    • /
    • pp.705-709
    • /
    • 2001
  • SrTiO$_3$에 Pr$^{3+}$ 이온, 또는 Pr$^{3+}$ 이온과 Ga$^{3+}$ 이온을 첨가하여 합성한 형광체와 floating zone method로 성장시킨 단결정의 PL 특성을 조사하였다. 분말 형광체와 단결정에서 모두 Ga$^{3+}$ 이온이 함께 첨가되었을 때 적색 발광 세기가 크게 증가하였다. XRF(X-Ray Fluorescence) 측정결과 Ga$^{3+}$ 이온이 함께 첨가되었을 때 SrTiO$_3$결정 격자내의 Pr$^{3+}$ 이온의 농도가 증가하였다. Ga$^{3+}$ 이온이 함께 첨가되었을 때 적색 발광 세기가 증가하는 것은 첨가된 Ga$^{3+}$ 이온이 결정내 발광 center인 Pt$^{3+}$ 이온의 농도가 증가시켰기 때문이며, 또한 Ga$^{3+}$ 이온이 hole trap center로 작용하기 때문인 것으로 생각된다.

  • PDF

Earth and Environmental Sciences with Synchrotron Radiation (방사광의 원리와 지구환경과학에의 응용)

  • 김영호
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.212-221
    • /
    • 2001
  • This paper introduces the characteristics and generation of the synchrotron radiation (SR). SR has the very high spectral brilliance, broad spectral range, X-ray wavelength tunability, high degree of polarization and collimation, and pulsed time structure. Also describes the technologies to apply in the fields of geology and environmental sciences. These include X-ray tomography, XRF, EXAFS, XANES, DAC, IVP experiments. Further, nuclear power generation and nuclear waste disposal methods are mentioned relating to energy. Using these, analyses of the chemistry, crystal structure and chemical combining states of minerals and rocks can be carried out. Applications in the fields of the economic geology, paleontology and environmental sciences are open too. Informations of the Earth interior materials' behavior under high pressure-temperature can be acquired.

  • PDF

High Resolution Elements Analysis in N-E Pacific Sediments using XRF Core Scanner (XRF 코어스캐너를 이용한 북동태평양 퇴적물 내 원소의 고해상분석)

  • Um, In-Kwon;Kim, Ji-Hoon;Nam, Seung-Il;Choi, Hun-Soo;Park, Ok-Boon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.129-138
    • /
    • 2009
  • The XRF core scanner was used, to analyze high resolution chemical elements in deep sea sediment cores from Clarion-Clipperton fracture zone of the northeastern Pacific. Comparison of data estimated by the XRF core scanner with ICP-AES showed relatively weak correlation coefficients between elements (especially Ba, Pb, Sr, Zr) except for Mn contents ($r^2$ > 0.89). However down-core variations of most elements seemed to be well matched each other and furthermore, XRF core scanner data reflected changes of sedimentary facies characterized by sediment colors. Mn/Al ratio dramatically changed at boundaries of facies in BC08-02-05 and BC08-02-13 but progressive changes occured in BC08-02-02, BC08-02-09 and BC08-02-10 where the sediments have been affected by bioturbations. The difference of Mn/Al ratio in each facies (Facies I, Facies II, Facies III) has been caused by redox condition of depositional environment. Vertical change of Mn/Al ratio were divided into two types probably affected by activities of benthic organisms in the study area.

Quantitative Analysis of X-Ray Fluorescence for Understanding the Effect of Elevated Temperatures on Cement Pastes (XRF (X-ray fluorescence)를 활용한 고온환경에 노출된 시멘트 페이스트 분석의 이해)

  • Kil-Song Jeon;Young-Sun Heo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.130-137
    • /
    • 2023
  • By using XRF (X-ray fluorescence), this study investigates the variation of chemical properties in cement pastes at elevated temperatures. High-temperature conditions were prepared by using an electric furnace, planning a total of 11 target temperatures ranging from room temperature to 1000 ℃. A standard library of geo-quant basic was applied for the analysis of 12 elements in cement paste, including Ca, Si, Al, Fe, S, Mg, Ti, Sr, P, Mn, Zn and K. The results revealed that, as the temperature increased, the proportion of each element in the cement paste also increased. With the exception of a few elements present in extremely low amounts in the cement pastes, the variation in the composition ratio of most elements exhibited a strong correlation with temperature, with an R-squared value exceeding 0.98. In this study, cement pastes exposed to normal and high-temperature environments were compared. The authors established that the reasons for the different results in this comparison can be explained from the same perspective as when comparing raw cement with cement paste. Furthermore, this study discussed the potentially most dominant parameter when investigating the properties of cement paste using XRF.

The estimation characteristics of cultured pearls (양식 진주의 특성평가)

  • 오정욱;김종식;최종건;김판채
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.6
    • /
    • pp.315-319
    • /
    • 2003
  • The quality, quantity, color, and characteristics were found out cultured seawater pearls and freshwater pearls. In the XRF measurement Ca chemical combinations were the main elements and Sr was detected at higher levels for the sea-water pearl and Si, S, Ca, Mn, P and other elements were found at higher levels for the fresh-water pearls. Such differences is judged to be caused by the ion diluted in sea and fresh water which affects the pearl elements. Although near similar structural peak was shown for the FT-IR measurement, the fresh-water pearl showed a lower peak for the 2344 wave. For the results of PL, the peak for fresh-water measured with Hd-Cd Laser at 455 nm was higher and with the Ar-ion Laser measurements, peaks were high at 545 nm and 570 nm for fresh-water pearl and sea-water pearls respectively.

A study on the development of SRM for XRF analysis of PZT[$Pb(ZrTi)O_3$] (PZT[$Pb(ZrTi)O_3$]의 XRF 분석용 SRM 개발에 관한 연구)

  • Kim, Young Man;Jeong, Chan Yee;Lim, Chang Ho;Choi, Beom Suk
    • Analytical Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.439-444
    • /
    • 1997
  • Twelve kinds (1set) standard materials of chemical ingredients of lead zirconate titanate[$Pb(ZrTi)O_3$] have been developed in order to determine fast and accurate measurement of X-ray fluorescence spectrometry. Especially, we used diluted(ahout sixteen times) filling compound($Li_2B_4O_7/LiBO_2=4/1$) to consider removal effect of matrix, storage convenience, and homogenous characteristics. As a result from the four different laboratories, we obtained extremly good agreement about the standard curve on twelve standard materials which containing eleven elements, PbO, $ZrO_2$, $TiO_2$, SrO, $WO_3$, $La_2O_3$, $Cr_2O_3$, MgO, $Nb_2O_5$, and $MnO_2$. The correlation factor of standard curve was over 0.998. However, ZnO has relatively low correlation factor, 0.977, because the concentration was 10ppm lower than other original materials. This analysis reveals that ZnO has shown the poor linearity as well as low fluorescence intensity. In present work, XRF standard materials are useful for determining a rapid and accurate results for major and minor elements concentration among PZT.

  • PDF

Thermal Stability of SrAl2O4: Eu2+, Dy3+ with Long Afterglow Phosphorescence (SrAl2O4: Eu2+, Dy3+ 축광안료의 고온안정성에 관한 연구)

  • Kim, Jin-Ho;Lee, Seung-Yong;Kim, Tae-Ho;Han, Kyu-Sung;Hwang, Kwang-Taek;Cho, Woo-Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.6
    • /
    • pp.618-622
    • /
    • 2014
  • Oxide phosphorescent phosphor has an wide application in ceramic art and decoration due to its chemical and mechanical properties. Here, phosphorescent properties of strontium aluminate phosphor ($SrAl_2O_4:Eu^{2+}$, $Dy^{3+}$) emitting yellowish-green light was investigated with thermal treatment at $1250^{\circ}C$ under air and reducing atmosphere. The characterizations of thermally treated samples were analyzed using X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), fluorescence spectrometer. $SrAl_2O_4:Eu^{2+}$, $Dy^{3+}$ still showed a good phosphorescent properties after annealing process in reducing atmosphere, while phosphorescence of $SrAl_2O_4:Eu^{2+}$, $Dy^{3+}$ annealed in air seriously degraded, due to oxidation of $Eu^{2+}$ to $Eu^{3+}$ ions. It was also observed that $SrAl_2O_4:Eu^{2+}$, $Dy^{3+}$ annealed in reducing atmosphere emitted yellowish-green light during 3 h after being exposed to sunlight.

Characterization of Natural Zeolite for Removal of Radioactive Nuclides (방사성 핵종 제거를 위한 천연 제올라이트 특성 연구)

  • Kim, Hu Sik;Park, Won Kwang;Lee, Ha Young;Park, Jong Sam;Lim, Woo Taik
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.41-51
    • /
    • 2014
  • The four natural zeolites collected in Pohang and Gyeongju area, Kyungsangbuk-do, Korea, were characterized by XRD, XRF, DTA, TGA, and CEC analysis. The primary species of these zeolite are heulandite, modenite, illite, and illite in Kuryongpo (Ku), Pohang (Po), Yangbuk-A (Ya-A), and Yangbuk-B (Ya-B) samples. The XRF analysis showed that the four zeolites contain Si, Al, Na, K, Mg, Ca, and Fe. Cation exchange capacity of Kuryongpo (Ku) zeolite was the highest compared to other zeolites. The adsorption capacities of Cs and Sr in the four natural zeolites were compared at $25^{\circ}C$. On the basis of adsorption data Langmuir and Freundlich adsorption isotherm model were confirmed. The equilibrium process was descried well by Langmuir isotherm model. This study shows that Ya-A zeolite is the most efficient for the $Cs^+$ and $Sr^{2+}$ ion adsorption compared to the other natural zeolites.

Preliminary Study on the Visualization and Quantification of Elemental Compositions in Individual Microdroplets using Solidification and Synchrotron Radiation Techniques

  • Ma, Chang-Jin;Tohno, Susumu;Kasahara, Mikio
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.1
    • /
    • pp.56-63
    • /
    • 2011
  • Quantifying the solute composition of a cloud droplet (or a whole droplet) is an important task for understanding formation processes and heating/cooling rates. In this study, a combination of droplet fixation and SR-XRF microprobe analysis was used to visualize and quantify elements in a micro-scale droplet. In this study, we report the preliminary outcome of this experiment. A spherical micro-scale droplet was successfully solidified through exposure to ${\alpha}$-cyano-acrylate vapor without affecting its size or shape. An X-ray microprobe system equipped at the beam line 37XU of Super Photon ring 8 GeV (SPring-8) was applied to visualize and quantify the elemental composition in an individual micro-scale droplet. It was possible to reconstruct 2D elemental maps for the K and Cl contained in a microdroplet that was dispensed from the 10-ppm KCl standard solution. Multi-elemental peaks corresponding to X-ray energy were also successfully resolved. Further experiments to determine quantitative measures of elemental mass in individual droplets and high-resolution X-ray microtomography (i.e., 3D elemental distribution) are planned for the future.