• Title/Summary/Keyword: SPUR

Search Result 435, Processing Time 0.03 seconds

FEM Analyses of Hot Forging and Cold Sizing of a Spur Gear (스퍼어기어의 열간단조와 냉간사이징의 유한요소해석)

  • 박종진;이정환
    • Transactions of Materials Processing
    • /
    • v.5 no.2
    • /
    • pp.105-114
    • /
    • 1996
  • Recently, precision forging techniques are applied to manufacture spur gears. Compared to conventional machining, they produce parts of better mechanical properties and less residual stresses with a much higher production rate. In the present investigation a rigid-plastic three dimensional finite element method was applied to analyze hot forging and cold sizing of a spur gear by closed dies. The involute curve of a tooth profile was approximated by a circle close to the curve. Results of the analyses make it possible to predict local strengths of the gear die failure and an appropriate preform for cold sizing. It was found that the preform for cold sizing. It was found that the preform for the cold sizing is the most important because it determines whether the gears especially teeth can be successfully formed.

  • PDF

A Root Fillet Stress Calculation Method for Thin-Rimmed spur Gears (얇은 림 평치차의 이뿌리 응력 계산법)

  • Chong, Tae-Hyong;Choi, Jae-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.2
    • /
    • pp.89-105
    • /
    • 1991
  • A method to apply the approximation formulae[1] for tooth fillet and root stresses of a thin-rimmed rack to the calculation of stress state of thin-rimmed external and internal spur gears is introduced. The stress values by the method proposed in this paper have shown good agreement with those by the REM analysis and also by the stress measurement of strain survey investigation. By this method, reliable stress state at tooth fillet and root areas in the thin-rimmed external and internal spur gears can be easily calculated, and a practical design method for the bending strength of such thin-rimmed gears is established.

  • PDF

Design of the Spur Gear with Honeycomb Lattice Structure and PBF Printing

  • Chul-Kyu Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_1
    • /
    • pp.529-536
    • /
    • 2023
  • In this study, the spur gear with honeycomb lattice structures are designed. The pitch diameter and body length of the spur gear are Ø93 mm and 104.0 mm, respectively. The designed gear was printed using Powder bed fusion (PBF) 3D printer. The gear is 3D printed perfectly. Even the teeth and honeycombs of the gear were output in the same way as the design shape. The printed gear with honeycomb lattice structure has a 24% smaller cross-sectional area and 29% smaller volume and weight than conventional solid structure gears. The surface roughness is approximately 4.5㎛, and the hardness is 345 HV.

Effects of Submerged Spur Dikes on the Ecosystem and Bed Deformation in Youngcheon River Bend (영천강 만곡부의 저수수제군이 생태계 및 하상변동에 미치는 효과)

  • Kim, Ki Heung;Lee, Hyeong-Rae;Jung, Hea Reyn
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.2
    • /
    • pp.137-153
    • /
    • 2013
  • In order to assess the effects of ecosystem and landscape in around spur dikes, this study had carried out monitoring on the changes of ecosystem and morphologic characteristics in around spur dikes that had been settled in bend of Youngcheon River. The study site was a short reach with length 190m, spur dikes were installed in March, 2008. Monitoring of the site had been started in May 2008 and had been completed September 2011. The results are as follow ; 1) Spur dikes that were installed for channel stabilization are performing effectively hydraulic functions at flooding time. 2) Spur dikes that were installed in water colliding front of river bend brought about sediment deposition between those and formed pools around front of those. Therefore, it was verified to create various physical characteristics in the aspect of channel topography and flow consequently. 3) The survey results that was carried out in October 2008 showed to emerge 25 species of plant, 9 species of fish and 17 species of benthic macroinvertebrates, but the survey results in October 2010 showed to emerge 74 species of plant, 12 species of fish and 19 species of benthic macroinvertebrates. In particular, plant species that emerged in 2011 increased about three times more than those in 2008.

Flume experiments for studying the effects of submergence on three-dimensional flow structure around a spur dike (수제의 잠김 정도에 따른 3차원 흐름 구조 변화에 관한 실험 연구)

  • Lee, Jiyong;Jeon, Jeongsook;Kim, Youngkyu;Kang, Seokkoo
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.2
    • /
    • pp.109-120
    • /
    • 2018
  • In this study, we conducted flume experiments to investigate the three-dimensional flow structures around a half-submerged spur dike in a straight open channel flume. The experiments were carried out under the two different Froude numbers, 0.10 and 0.18. The results were compared with the previous experimental result conducted for non-submerged spur dike. Three-dimensional instantaneous velocities were measured using Acoustic Doppler Velocimetry (ADV) and water elevation data were collected using ultra sonic distance sensor. The results show that submergence conditions of the spur dike largely influence the three-dimensional flow structures around a spur dike.

Analysis of the Reduction Gear in Electric Agricultural Vehicle

  • Choi, Won-Sik;Kwon, Soon-Goo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.4
    • /
    • pp.159-165
    • /
    • 2018
  • In electric agricultural machine a reduction gear is needed to convert the high speed rotation motion generated by DC motor to lower speed rotation motion used by the vehicle. The reduction gear consists of several spur gears. Spur gears are the most easily visualized gears that transmit motion between two parallel shafts and easy to produce. The modelling and simulation of spur gears in DC motor reduction gear is important to predict the actual motion behaviour. A pair of spur gear tooth in action is generally subjected to two types of cyclic stress: contact stress and bending stress. The stress may not attain their maximum values at the same point of contact fatigue. These types of failure can be minimized by analysis of the problem during the design stage and creating proper tooth surface profile with proper manufacturing methods. To improve its life expectation in this study modal and stress analysis of reduction gear is simulated using ANSYS workbench based on finite element method (FEM). The modal analysis was done to understand reduction gear deformation behaviour when vibration occurs. FEM static stress analysis is also simulated on reduction gear to simulate the gear teeth bending stress and contact stress behaviour.