• Title/Summary/Keyword: SPOT-4 위성영상

Search Result 40, Processing Time 0.027 seconds

Coastline Change Detection Using CORONA Imagery (CORONA 위성영상을 이용한 동해안 해안선 변화탐지)

  • Kim Gi Hong;Choi Seung Pil;Yook Woon Soo;Song Yeong Sun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.4
    • /
    • pp.419-426
    • /
    • 2005
  • Recently the interest in coast area has been increased in the view of management and usage of national territory. Rapid coastal development has caused directly or indirectly coastline changes which may make environmental problems or threaten the nearby residents' livelihood. CORONA was one of the US satellite reconnaissance programs, and it's imagery provides informations about past coastline with high resolution. In this study, we applied rigorous geo-referencing algorithm to CORONA imagery in order to generate the mosaic image of the East coast area of 1969 with 20m accuracy. This old era CORONA mosaic image was compared with SPOT image of 2005, and the coastline changes were analyzed. We were able to ascertain considerable erosion and accumulation in some parts of study area. erosion area which is calculated from imagery is $0.32\;km^2$ from Kosung to Kangnung. Results of coastline change detection can provide useful information for related studies.

Research for Generation of Accurate DEM using High Resolution Satellite Image and Analysis of Accuracy (고해상도 위성영상을 이용한 정밀 DEM 생성 및 정확도 분석에 관한 연구)

  • Jeong, Jae-Hoon;Lee, Tae-Yoon;Kim, Tae-Jung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.4
    • /
    • pp.359-365
    • /
    • 2008
  • This paper focused on generation of more accurate DEM and analysis of accuracy. For this, we applied suitable sensor modeling technique for each satellite image and automatic pyramid matching using image pyramid was applied. Matching algorithm based on epipolarity and scene geometry also was applied for stereo matching. IKONOS, Quickbird, SPOT-5, Kompsat-2 were used for experiments. In particular, we applied orbit-attitude sensor modeling technique for Kompsat-2 and performed DEM generation successfully. All DEM generated show good quality. Assessment was carried out using USGS DTED and we also compared between DEM generated in this research and DEM generated from common software. All DEM had $9m{\sim}12m$ Mean Absolute Error and $13m{\sim}16m$ RMS Error. Experimental results show that the DEMs of good performance which is similar to or better than result of DEMs generated from common software.

SPOT Camera Modeling Using Auxiliary Data (영상보조자료를 이용한 SPOT 카메라 모델링)

  • 김만조;차승훈;고보연
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.4
    • /
    • pp.285-290
    • /
    • 2003
  • In this paper, a camera modeling method that utilizes ephemeris data and imaging geometry is presented. The proposed method constructs a mathematical model only with parameters that are contained in auxiliary files and does not require any ground control points for model construction. Control points are only needed to eliminate geolocation error of the model that is originated from errors embedded in the parameters that are used in model construction. By using a few (one or two) control points, RMS error of around pixel size can be obtained and control points are not necessarily uniformly distributed in line direction of the scene. This advantage is crucial in large-scale projects and will enable to reduce project cost dramatically.

SPOT/VEGETATION-based Algorithm for the Discrimination of Cloud and Snow (SPOT/VEGETATION 영상을 이용한 눈과 구름의 분류 알고리즘)

  • Han Kyung-Soo;Kim Young-Seup
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.4
    • /
    • pp.235-244
    • /
    • 2004
  • This study focuses on the assessment for proposed algorithm to discriminate cloudy pixels from snowy pixels through use of visible, near infrared, and short wave infrared channel data in VEGETATION-1 sensor embarked on SPOT-4 satellite. Traditional threshold algorithms for cloud and snow masks did not show very good accuracy. Instead of these independent masking procedures, K-Means clustering scheme is employed for cloud/snow discrimination in this study. The pixels used in clustering were selected through an integration of two threshold algorithms, which group ensemble the snow and cloud pixels. This may give a opportunity to simplify the clustering procedure and to improve the accuracy as compared with full image clustering. This paper also compared the results with threshold methods of snow cover and clouds, and assesses discrimination capability in VEGETATION channels. The quality of the cloud and snow mask even more improved when present algorithm is implemented. The discrimination errors were considerably reduced by 19.4% and 9.7% for cloud mask and snow mask as compared with traditional methods, respectively.

Epipolar Geometry for Gupta and Hartley Sensor Model without the Ephemeris Data (위성 궤도 정보를 사용하지 않는 Gupta와 Hartley 센서모델의 에피폴라 기하모델)

  • 이해연;박원규
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.4
    • /
    • pp.233-242
    • /
    • 2002
  • In this paper, an epipolar model without the ephemeris data is proposed. Also, various epipolar models such as the epipolar geometry of perspective sensor, the one proposed by Gupta and Hartley and the one based on the Orun and Natarajan's sensor model are reviewed and their accuracy are quantitatively analyzed using devised measure. Modeling data from ground control points, ground control points, ephemeris data and independent checking points are selected on SPOT over Taejon and Boryung area and KOMPSAT over Taejon and Nonsan area. Based on the results, the epipolar model of perspective sensor and the one by Gupta and Hartley have the average accuracy within 1 pixel but show high errors in several checking points. The proposed epipolarity model provides better results than that of perspective sensor and by Gupta and Hartley. Also, it shows the accuracy similar to the one based on Orun and Natarajan's sensor model.

Development of Value-added Product Generation Software from Satellite Imagery: 'Valadd-Pro' (고부가 정보 추출을 위한 위성 영상 처리 소프트웨어의 개발: '발라드-프로')

  • Lee, Hae Yeoun;Park, Wonkyu;Kim, S.A.B.;Kim, Taejung;Yoon, Taehun;Shin, Dongseok;Lee, Heungkyu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.2 no.3
    • /
    • pp.91-100
    • /
    • 1999
  • To extract value-added products from satellite images for the benefit of science and human life, the Satellite Technology Research Center at Korea Advanced Institute of Science and Technology has developed an integrated software 'Valadd-Pro'. In this paper, the 'Valadd-Pro' software is briefly introduced and its main components such as geometric correction, ortho correction and digital elevation model extraction are described. The performances of the 'Valadd-Pro' was assessed on $60km{\times}60km$ SPOT panchromatic images using ground control points from GPS measurements. Also, the height accuracy was measured by comparing our results with the $DTEDs^3$ produced by USGS and the DEM generated from the digitized countours of maps produced by the National Geographic Institute. In geometric correction, the 'Valadd-Pro' software needed fewer ground control points than a commercial software 'P' for the satisfactory results. In ortho correction, the 'Valadd-Pro' software show the similar performance to a commercial software 'P'. In digital elevation model extraction, the 'Valadd-Pro' software is two times more accurate and four times faster than a commercial software 'P'.

  • PDF

Comparison of Single-Sensor Stereo Model and Dual-Sensor Stereo Model with High-Resolution Satellite Imagery (고해상도 위성영상에서의 동종센서 스테레오 모델과 이종센서 스테레오 모델의 비교)

  • Jeong, Jaehoon
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.5
    • /
    • pp.421-432
    • /
    • 2015
  • There are significant differences in geometric property and stereo model accuracy between single-sensor stereo that uses two images taken by stereo acquisition mechanism within identical sensor and dual-sensor stereo that randomly combines two images taken from two different sensors. This paper compares the two types of stereo pairs thoroughly. For experiment, two single-sensor stereo pairs and four dual-sensor stereo pairs were constituted using SPOT-5 stereo and KOMPSAT-2 stereo covering same area. While the two single-sensor stereos have stable geometry, the dual-sensor stereos produced two stable and two unstable geometries. In particular, the unstable geometry led to a decrease in stereo model accuracy of the dual-sensor stereos. The two types of stereo pairs were also compared under the stable geometry. Overall, single-sensor stereos performed better than dual-sensor stereos for vertical mapping, but dual-sensor stereos was more accurate for horizontal mapping. This paper has revealed the differences of two types of stereos with their geometric properties and positioning accuracies, suggesting important considerations for handling satellite stereo images, particularly for dual-satellite stereo images.

A Study on the Distribution and Changes of Sand Dune at the Lower Reach of Duman River, North Korea (두만강 하류 사구의 분포와 변화에 관한 연구)

  • Lee Min-Boo;Kim Nam-Shin;Lee Gwang-Ryul;Han Uk;Jin, Shizhu
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.3 s.114
    • /
    • pp.331-345
    • /
    • 2006
  • This study deals with geomorphological process of the sand dune landform including the distribution and surface environments, characteristics of sediments, origins and moving processes in lower reach and mouth delta of Duman River, Northeast Korea and China. The methodology of the study includes image analysis of Landsat TM(1992.10) and ETM(2000.9) and Spot(2005.4) for analysis of land cover, 2 times field survey for recognition of landform and acquisition of sediments raw data materials, and grain analysis and exoscopy about raw data materials. The geomorphic elements from satellite image analysis are composed of the delta, sand spit, active and stable dune, sand bar and riparian vegetated zone. Results of the grain analysis indicate the sediments originated from marine coastal zone than riverine one. This means that present sand dune not so much reflect present climatic and geomorphic environments. Result of the exoscopy analysis show that ratio of quartz, which is comparatively resistant to environment, is highest as $65{\sim}83%$ out of sediments. But the surface of the $30{\sim}40%$ of mineral grains was coated by yellow-colored stained materials, due to chemical weathering. Some grains show rough skin, looking as acicular, network structure and etching pits, affected by physical and chemical weathering.

Optical Design of Satellite Camera for Lens Shifting Image Stabilization (렌즈 시프팅 영상 안정화 기법 적용을 위한 위성카메라의 광학설계)

  • Tak, Jun-Mo;Hwang, Jai-Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.4
    • /
    • pp.17-25
    • /
    • 2016
  • In this study, an optical system for a lens-shifting method that compensates for microvibration of a high-agility small satellite has been designed. The lens-shifting method is an image-stabilization technique that can be applied to compensate for the optical path disturbed by microvibration. The target optical system is designed by using Code-V, a commercial optical-design code. The specifications for real satellite cameras have established the requirements for optical design. The Ray aberration curve, spot diagram, and MTF curve were carried out to verify if the designed optical system meets the requirements or not. The designed Schmidt-Cassegrain optical system with field flattener and a vibration-reduction lens has been verified to meet the optical requirements, 33% of MTF at Nyquist frequency, GSD of 2.87 m, and vibration coefficient of 0.95~1.0.

Vegetation Water Status Monitoring around China and Mongolia Desert using Satellite Data (위성자료를 이용한 중국과 몽골 사막주변의 식생수분상태 모니터링)

  • Lee, Ga-Lam;Kim, Young-Seup;Han, Kyoung-Soo;Lee, Chang-Suk;Yeom, Jong-Min
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.4
    • /
    • pp.94-100
    • /
    • 2008
  • Recently, global warming for climate system is a crucial issue over the world and it brings about severe climate change, abnormal temperature, a downpour, a drought, and so on. Especially, a drought over the earth surface accelerates desertification which has been advanced over the several years mainly originated from a climatic change. The objective of this study is to detect variation of vegetation water condition around China and Mongolia desert by using satellite data having advantage in observing surface biological system. In this study, we use SPOT/VEGETATION satellite image to calculate NDWI (Normalized Difference Water Index) around study area desert for monitoring of status of vegetation characteristics. The vegetation water status index from remotely sensing data is related to desertification since dry vegetation is apt to desertify. We can infer vegetation water status using NDWI acquired by NIR (Near infrared) and SWIR (Short wave infrared) bands from SPOT/VGT. The consequence is that NDWI decreased around desert from 1999 to 2006. The areas that NDWI was decreased are located in the northeast of Mongolian Gobi desert and the southeast of China Taklamakan desert.

  • PDF