• Title/Summary/Keyword: SPOOL

Search Result 216, Processing Time 0.025 seconds

The Analysis and Design of Electro-pneumatic Servo Valve (공기압 Servo Valve 설계 및 해석)

  • Ko, J.H.;Ryu, D.L.;Lee, J.H.;Kim, Y.S.;Kim, D.S.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1210-1214
    • /
    • 2008
  • Electro-pneumatic servo valve is an electro-mechanical device which converts electric signal into pneumatic flow rate or pressure. In order to improve the overall performance of pneumatic servo systems, electro-pneumatic servo valves are required, which have fast dynamic characteristic, no air leakage at null, and can be fabricated at a low-cost. The first objective of this research is to design and fabricate a new electro-pneumatic servo valve which satisfies the above-mentioned requirements. In this paper, we has been modeled as a system consisting of coupled electro-mechanic and mechanical subsystems. The appropriateness of the model has been verified by simulation. The simulation model resolves the valve body motion and the solenoid current at high accuracy. Also, we are calculate the displacement of spool and computed results show winding currents, magnetic actuator force, flux density line, displacement, velocity, back EMF, eddy current etc.

  • PDF

A Study on the Dynamic Characteristics of Counter Balance Valve for High Load (고부하용 카운터 밸란스 밸브의 동적 특성에 관한 연구)

  • Sung, Won-Jun;Chung, Kwang-Sik;Lee, Seung-Hyun
    • Tribology and Lubricants
    • /
    • v.18 no.1
    • /
    • pp.68-74
    • /
    • 2002
  • In this study, the dynamic characteristics of the spool type counter balance valve are studied. The nonlinear governing differential eguations are derived. Routh-Hurwitz criterion is used to characterize the linearized eguations. Static and dynamic experiments are carried out for the determination of parameters that are necessary for the analysis and the stability of the system.

A Study on In-Process Performance Diagnosis of Hydraulic Servovalves - First Report : Position Control System - (유압서보밸브의 인-프로세스 성능 진단에 관한 연구 I - 유압실린더 위치제어계의 경우 -)

  • Kim S.D.;Kim K.H.;Song J.S.;Ham Y.B.;Lee J.C.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.3 no.1
    • /
    • pp.7-14
    • /
    • 2006
  • In this paper, an in-process diagnosis method for performance of position control servo system was studied, which was based upon null bias, slew-rate ratio and delay time measurement. Slew-rate ratio and delay time were analyzed by theoretical analysis, computer simulation and experiment. As a result of these analysis, when spool of servovalve was weared, slew-rate ratio was decreased and delay time was increased.

  • PDF

Energy Saving in Boom Motion of Excavators using IMV (IMV를 사용한 유압굴삭기 붐 동작의 에너지 절감)

  • Huh, Jun Young
    • Journal of Drive and Control
    • /
    • v.14 no.3
    • /
    • pp.1-7
    • /
    • 2017
  • Energy consumption of conventional hydraulic excavators controlled by MCV is considerable when negative load is applied because the meter orifice and meter-out orifice are machined in one spool. Therefore, IMV is introduced to save energy use of hydraulic excavators, but existing hydraulic excavators have various advantages so it is difficult to make a clear comparison. In this study, we compare the use of an existing MCV excavator that has many advantages such as negative control, and IMV for boom up and down operation, and if IMV is used to save energy, we will examine the cause. If possible, for comparability under the same conditions, both systems use pressure balance valves to minimize power consumption when not using power in the actuator. The orifice area at each notch of each valve is calculated, and energy saving is verified by comparing the two systems through simulation.

Friction of Superconductor Bearing (초전도 베어링의 마찰계수 측정)

  • ;J. R Hull
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.237-239
    • /
    • 2003
  • A high-temperature superconductor (HTS) journal bearing was studied for loss. Two HTS bearings support the rotor at top and bottom. The rotor weight is 4 kg and the length is about 300 mm. Both the top and bottom bearings have two permanent magnet (PM) rings with an iron pole piece separating them. Each HTS journal bearing is composed of six pieces of superconductor blocks of size 35$\times$25$\times$10 mm. The HTS blocks are encased in a cryochamber through which liquid nitrogen flows. The inner spool of the cryochamber is made from G-10 to reduce eddy current loss, and the rest of the cryochamber is stainless steel. The magnetic field from the PM rings < 10 mT on the stainless part. The rotational drag was measured over the same speed range. Results indicate that the 10 mT design criteria for magnetic field on the stainless part of the cryochamber is too high.

  • PDF

On The Thermal Stresses due to Welding of a Penetraion Piece for a Watertight Bulkhead Plate(II) -Thermal Stresses in a Penetration Piece- (수밀격벽(水密隔壁)을 관통(貫通)하는 관(管)의 용접시공(熔接施工)으로 인(因)한 열응력해석(熱應力解析)(II) -Penetration piece에서의 열응력(熱應力)-)

  • Hyo-Chul,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.12 no.1
    • /
    • pp.9-22
    • /
    • 1975
  • As a second step of a thermal stress analysis in a watertight bulkhead plate during welding of a spool type penetration piece, is idealized as a thin circular disk with a clamped boundary. The exact solution for the transient temperature distribution and associated quasi-static thermal stresses which arise in a circular disk subjected to an instantaneous point source of heat acting in its interior has been obtained. And the solutions have been extended to the case of moving source of heat with the aid of the Duhamel's superposition integral and the results finally derived have been compared with the other results from the typical cases. The solutions can be applied to the problem such as a welding of a penetration piece on the watertight bulkhead and also applicable to the problems which occur in cutting or welding.

  • PDF

On the Thermal Stresses due to Welding of a Penetration Piece for a Watertight Bulkhead Plate(I) -Thermal Stresses in a Bulkhead Plate- (수밀격벽(水密隔壁)을 관통(貫通)하는 관(管)의 용접시공(熔接施工)으로 인(因)한 열응력해석(熱應力解析)(I) -격벽판(隔壁板)에서의 열응력(熱應力)-)

  • Hyo-Chul,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 1975
  • As a first step of a thermal stress analysis in a watertight bulkhead plate during welding of a spool type penetration piece, the bulkhead plate has been idealized as infinite plate with a circular hole. The exact solution for the transient temperature distribution and the associated quasi-static thermal stress which arise in a infinite plate subjected to an instantaneous point source of heat acting on the periphery of the circular hole. And the solutions have been extended to the case of a moving heat source with the aid of the Duhamel's superposition integral. The solutions can be applied to the problems such as a circular cutting or welding of a plate.

  • PDF

Performance optimization control of supersonic variable cycle engines

  • Tagashira, Takeshi;Sugiyama, Nanahisa
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.779-783
    • /
    • 2004
  • First this paper introduces an advanced FADEC (Full Authority Digital Electric Control) for current and future jet engines.It is designed to realize not only stable thrust control, but also performance improvement, reliability enhancement, service life extension, etc. It can be built by using current micro-processor with high computational power and there exists no difficulties but reliability problem of the micro- processor. Next, the simulation results of SFC minimization control are shown. The target engine is a supersonic, low-bypass ratio, 2-spool, combined cycle turbofan, designated as HYPR90T, which consists of a turbo engine for under Mach 3 flight and a ram engine for over Mach 3 flight. he results can then be used for performance optimization of the engine, which plays important role in the advanced FADEC.

  • PDF

Development of a Direct-Operated Proportional Pressure Reducing Valve for Low-Band Type Active Suspension Control (Low-Band Type 능동형 현가제어를 위한 직동식 전자비례 감압밸브의 개발)

  • 홍예선;류시복;김영식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.3
    • /
    • pp.75-84
    • /
    • 1994
  • In general direct-operated pressure reducing valves have been gardly applied to a dynamic control system such as active suspension control because of their poor control stability. But they are more robust than pilot-operated type and do not need pilot control flow. In this paper development of a new direct-operated proportional pressure reducing valve for low-band type active suspension control is reported. By means of a special damper directly linked to the valve spool, the control stability could be effectively improved without drawback in response time. The linearity error was less than $\pm$3.5%. Applied to an experimental active suspension system the new valve showed the $-90^{\circ}$ phase delay at 4Hz with 20% sinusoidal signal input and could control the suspension system with almost same performance as that with a pilot-operated type valve.

  • PDF

Nonlinear adaptive control of a quarter car active suspension (1/4 차 능동현가계의 비선형 적응제어)

  • Kim, Eung-Seok
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.582-589
    • /
    • 1996
  • In this paper, an adaptive control problem of a hydraulic actuator for vehicle active suspension controller is divided into two parts: the inner loop controller and the outer loop controller. Inner loop controller, which is a nonlinear adaptive controller, is designed to control the force generated by the nonlinear hydraulic actuator acting under the effects of Coulomb friction. For simplicity of designing a nonlinear controller, the spool valve dynamics of a hydraulic actuator is reduced using a singular perturbation technique. The estimation error signal used to an indirect parameter adaptation is calculated without a regressor filtering. The absolute velocity of a sprung mass will be damped down by its negatively proportional term(sky-hook damper) adopted as an outer loop controller. Simulation results are presented to show the importance of controlling the actuator force and the validity of the proposed adaptive controller. (author). refs., figs. tab.

  • PDF