• 제목/요약/키워드: SPME fiber

검색결과 67건 처리시간 0.03초

고상 미량 추출 장치(SPME, solid phase micro-extraction device)를 이용한 물 중의 THM(trihalomethane) 분석 (Determination of THM(trihalomethane) in Rain by using Solid Phase Micro-Elctraction(SPME) Fiber Assembly)

  • 유광식;박상윤
    • 한국환경과학회지
    • /
    • 제6권3호
    • /
    • pp.277-283
    • /
    • 1997
  • SPME deuce was applied to determine the THM in an aqueous solution. The 6 kinds of THM was quantitatively detenuned by using GC-ECD which has the sample eutracted on the SPME fiber from an aqueous solution for 10 min. The THM components were well separated from $CHCl_3$ to the last $CHBr_3$ UHh 13 mons at the condition. 6 kinds of the volatile halogenated organic compounds: $CHCl_3$, $CHBrCl_2$, $CHBrtCl_2$, $CHCl_3$, $C_2Cl$. and $CHBr_3$, showed well defirled calibration graph with good llnearlty from a few ppb level up to several tens of pub concentration. $CHBr_2Cl$ and $C_2C1_4$ were detected from a few samples among the 10 of river samples. CHCl3, however, was detected In 4 sea water samples with the highest of 10 ppd among the pouuted 6 positions. Trace level of $CHBr_2Cl$ and few pub level of $CHBr_3$ were also detected at the other two sample stations. Most of the 13 rain water samples collected from 6 sampling stations were contained ppd level of $CHCl_3$, and also $CHBr_2Cl$, and C_2Cl_4$ were only detected at trace level at a few rain samples among them. We could recognize the fact that our Ut and water enoronment has already been contaminated by certain volatile halogenated organic compounds through this study.

  • PDF

Application of Solid Phase Microextraction to the Analysis of Pesticides in Vegetables

  • Cho Tae-Hee;Kang Hee-Gon;Kim Tae-Rang;Chang Min-Su
    • 한국식품위생안전성학회:학술대회논문집
    • /
    • 한국식품위생안전성학회 2001년도 The Asia-Pacific Conference on Reproductive Biology and Environmental Sciences
    • /
    • pp.171-174
    • /
    • 2001
  • Solid phase micro-extraction (SPME), a solvent-free, rapid and inexpensive method for the extraction of organic compounds from aqueous sample matrices, was evaluated for determination of the 120 pesticides in vegetables such as crown daisy, perilla leaf, leafy lettuce and to mato. The analysis conditions were chosen for the SPME method: 15 min of immersion of the PDMS fiber in 10 ml of the solution with stirring at 1,000 rpm. The recovery tests were carried out in triplicate. The range of recoveries was 0-142% for organochlorine pesticides and $4.9\sim200\%$ for organophosphorus pesticides. The recoveries were very low in the pesticide groups with low solubility in water. The recoveries became lower in proportion to the interference materials in vegetables. The recovery in tomato was relatively higher than that in perilla Ie af and crown daisy. The recovery values obtained by SPE and SPME were compared. In leaf y lettuce, recovery obtained by SPE method ranged from $58.1\%\;to\;136.1\%$ and recovery by SPME ranged from $9.6\%\;to\;176.3\%$ In organophosphorus pesticides. The recovery in SPME method was satisfactory with $136\%$ for ethoprophos, $119\%$ for methidathion and $113\%$ for diazinon. Meanwhile, recovery of EPN, phenthoate and 2,4-DDT revealed relatively low value of $38\%,\;41\%\;and\;3.4\%,$ respectively. However, most of pesticides applied to SPME method sho wed constant recovery and precision. From these results, it can be concluded that solid phase micro-extraction might be an appropriate method for the screening test of pesticides in vegetables.

  • PDF

추출방법에 따른 잎담배 종류별 휘발성 향기성분 특성비교 (Comparison of the volatile flavor compounds in different tobacco types by different extraction methods)

  • 이장미;이정민;이창국;복진영;황건중
    • 한국연초학회지
    • /
    • 제32권2호
    • /
    • pp.77-87
    • /
    • 2010
  • Traditional simultaneous distillation extraction(SDE) and solid-phase micro extraction(SPME) methods using GC/MS were compared for their effectiveness in the extraction of volatile flavor compounds from different tobacco leaves types(flue-cured, burley, oriental). The major volatile flavor compounds of flue-cured and burley tobacco were similar such as neophytadiene, solanone, megastigmatrienone isomers, ${\beta}$-damascenone and ${\beta}$-ionone. On the other hand, volatile flavor compounds such as norambreinolide, sclareolide were specifically identified in oriental tobacco. Each method was used to evaluate the responses of some analytes from real samples and standards in order to provide sensitivity comparisons between two techniques. Among three types of SPME fibers such as PDMS(Polydimethylsiloxane), PA(Polyacrylate) and PDMS/DVB (Polydimethylsiloxane/Divinylbenzene) which were investigated to determine the selectivity and adsorption efficiency, PDMS/DVB fiber was selected for the extractions of the volatile flavor compounds due to its effectiveness. The qualitative analysis showed that the total amount of volatile flavor compounds in SDE method(130 species) was much more than that in SPME method(85 species). SPME method was more efficient for all the highly volatile compounds than SDE method, but on the other hand, low-volatile compounds such as fatty acids or high-molecular hydrocabons were detected in SDE method. SPME method based on a short-time sampling can be adjusted to favor a selected group compounds in tobacco. Furthermore this results could be used to estimate the aroma characteristics of cigarette blending by using a different type of tobacco with more effectiveness and convenience.

유통 올리브유의 잔류 헥산에 대한 연구 (Study of the Presence of Residual Hexane in Olive Oils)

  • 김남숙;이정희;허옥순;이기택
    • 한국식품영양과학회지
    • /
    • 제35권10호
    • /
    • pp.1405-1411
    • /
    • 2006
  • 국내에서 유통되는 국내외 브랜드의 extra virgin급과 정제/혼합 올리브유에 잔류된 헥산의 함량을 측정하기 위하여 신속하고 간편한 headspace법을 이용한 전자코(a-FOX 3000, Alpha M.O.S., France)를 이용하여 분석하였으며, head-space-SPME 법을 사용한 GC/MS 분석방법을 이용하여 정량하였다. 전자코 분석결과, 올리브유에 함유된 헥산의 존재 유무 및 농도를 예측할 수 있을 것으로 사료되었으며, 1차로 수거된 국내에 유통 중인 5종의 국내 브랜드 extra virgin급, 10종의 국외브랜드 extra virgin급과 7종의 국내외 브랜드인 혼합/정제 올리브유의 경우 헥산의 잔류 합유량은 잔류되어 있지 않거나, 잔류되어 있다고 하더라도 국내 허용치인 5 ppm 미만으로 예측되었다. 잔류 헥산을 정량하기 위하여 polydimethylsiloxane(PDMS)으로 코팅된 fiber를 사용한 headspace SPME-GC/MS를 사용하였다. 이 때 시료의 head space산출을 위한 최적의 휘발촉진 온도를 선정하기 위하여 각 온도별 검량선 작성한 결과 $R^2$값이 99.99%로 가장 재현성이 높을 것으로 판단되는 $70^{\circ}C$에서 30 min 동안의 휘발촉진과정을 통하여 휘발성분을 fiber에 흡착하였다. 1차로 수집한 총 22개의 올리브유 중 총 6개의 시료에서 헥산이 검출되었고, 2차로 수집한 총 19개의 올리브유에서는 총 2개의 시료에서 헥산이 검출되었으나, 검출된 잔류 헥산의 양은 모두 국내 규정한계농도(5 ppm) 이하인 1 ppm 이하인 것으로 확인되었다.

Headspace Solid Phase Microextraction-Gas Chromatography/Mass Spectrometry를 이용한 비타민드링크 제품 중 Benzene의 미량분석 (Determination of the presence of benzene in vitamin drinks using headspace - solid phase microextraction and gas chromatography - mass spectrometry)

  • 김종훈;이경민
    • 분석과학
    • /
    • 제20권3호
    • /
    • pp.237-245
    • /
    • 2007
  • 현재 시중에서 판매되고 있는 비타민드링크 제품 중 20개사 31개 제품의 벤젠 함량을 headspace-solid phase microextraction(HS-SPME)법을 이용하여 GC/MS-SIM으로 분석을 하였다. SPME fiber는 $100{\mu}m$ PDMS를 사용하였다. 또한 정량방법은 표준물첨가법을 사용하였으며 40 mL vial에 용액 25 mL를 취하고 그 안에 자석젓개를 넣어 1200 rpm에서 교반시키고 4분 동안 흡착시킨 후 1분 동안 GC에서 탈착시켜 표준검량곡선을 작성하였다. 이 때 검량곡선의 상관계수 값은 0.999이상을 나타내었다. 검출한계는 시료를 분석할 때마다 산출하였는데 평균값이 0.56 ng/mL(${\pm}0.43$)이었으며 회귀식이 존재하는 농도의 범위는 0~40 ng/mL였다. 그 결과 시료 중 벤젠의 함유량은 nd~47.35 ng/mL의 농도의 범위였다. 전체 시료 중 15개의 제품에서 벤젠이 검출되었으며 그 중 5개의 제품에서는 벤젠의 함량이 먹는 물 수질기준인 10 ng/mL를 넘는 각각 16.99 ng/mL, 35.14 ng/mL, 16.03 ng/mL, 47.35 ng/mL, 14.28 ng/mL가 검출되었다.

HS SPME-GC/MS를 이용한 혈액 중 유기염소계 농약의 분석법 개발 (Development of an analytical method of organochlorine pesticides in human bloods using head space-solid phase microextraction coupled with gas chromatography/mass spectrometry)

  • 강태우;표희수;홍종기
    • 분석과학
    • /
    • 제21권4호
    • /
    • pp.259-271
    • /
    • 2008
  • 혈액 내에 축적되어 있는 유기염소계 농약을 분석하기 위한 방법으로 기존에는 액체-액체 추출법과 고체상 추출법을 많이 사용하였으나 정제 및 많은 양의 시료 처리에 한계가 있다. 이를 극복하기 위한 방법으로 시료양이 적으며 간편한 고체상미량추출법을 사용하여 혈액 중 18종의 유기염소계 농약의 최적 추출법을 연구하였다. 흡착조건(fiber type, 흡착시간, 흡착온도, 염석효과)과 탈착조건(탈착시간, 탈착온도) 등 최적의 추출을 위해 여러 가지의 실험조건 등을 검토한 결과, fiber는 polyacrylate $85{\mu}m$, 흡착시간은 50분, 흡착온도는 $80^{\circ}C$, 염석효과는 NaCl 0.1 g, 탈착시간은 5분, 탈착온도는 $280^{\circ}C$에서 최적임을 확인하였다. 정확도, 정밀도 및 검출한계에 대한 타당성을 최적 실험조건에서 조사한 결과, 검출한계는 0.05~0.20 ng/mL, 정밀도는 5.59~13.39%, 정확도는 -0.5%~24.5%의 범위인 것으로 확인되었다.

Comparative Analyses of the Flavors from Hallabong (Citrus sphaerocarpa) with Lemon, Orange and Grapefruit by SPTE and HS-SPME Combined with GC-MS

  • Yoo, Zoo-Won;Kim, Nam-Sun;Lee, Dong-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권2호
    • /
    • pp.271-279
    • /
    • 2004
  • The aroma component of Hallabong peel has been characterized by GC-MS with two different extraction techniques: solid-phase trapping solvent extraction (SPTE) and headspace solid-phase microextraction (HSSPME). Aroma components emitted from Hallabong peel were compared with those of other citrus varieties: lemon, orange and grapefruit by SPTE and GC-MS. d-Limonene (96.98%) in Hallabong was the main component, and relatively higher peaks of cis- ${\beta}$-ocimene, valencene and -farnesene were observed. Other volatile aromas, such as sabinene, isothujol and ${\delta}$-elemene were observed as small peaks. Also, principal components analysis was employed to distinguish citrus aromas based on their chromatographic data. For HSSPME, the fiber efficiency was evaluated by comparing the partition coefficient ($K_{gs}$Kgs) between the HS gaseous phase and HS-SPME fiber coating, and the relative concentration factors (CF) of the five characteristic compounds of the four citrus varieties. 50/30 ${\mu}$m DVB/CAR/PDMS fiber was verified as the best choice among the four fibers evaluated for all the samples.

Volatile Component of Pine Needles from Pinus densiflora S. using Solid Phase Microextraction-Ges Chromatography-Mass Spectrometry

  • Lee Jae-Gon;Lee Chang-Gook;Back Shin;Jang Hee-Jin;Kwag Jae-Jin;Lee Gae-Ho
    • 한국식품영양학회지
    • /
    • 제18권4호
    • /
    • pp.373-379
    • /
    • 2005
  • The volatile components of Pinus densiflora needles were studied by gas chromatography-mass spectrometry(GC-MS), using seven kinds of solid phase microextraction (SPME) fibers, seven in SPME fibers: 100 ${\mu}m$ PDMS, 65 ${\mu}m$ PDMS/DVB, 65 ${\mu}m$ SF-PDMS/DVB, 85 ${\mu}m$ PA, 75 ${\mu}m$ CAR/PDMS, 65 ${\mu}m$ CW/DVB and 50/30 ${\mu}m$ DVB/CAR/PDMS fibers. A total of 40 components were identified by using the seven different SPME fibers. The identified components were classified, according to their functionalities, as follows: 26 hydro-carbons, 7 alcohols, 4 carbonyl compounds, and 3 esters. The major volatile components of Pinus densiflora needles identified by these SPME fibers were $\alpha$-pinene ($1.7\~21.7\;{\mu}g/g$), $\beta$-myrcene ($2.0\~20.1\;{\mu}g/g$), $\beta$-phel-landrene ($4.6\~22.8\;{\mu}g/g$), $\beta$-caryophyllene ($6.7\~26.0\;{\mu}g/g$) germacrene D ($1.1\~11.9\;{\mu}g/g$). In the comparison of the seven SPME fibers, PDMS appeared to be the most suitable fiber for the analysis of hydrocarbon compounds and CAR/DPMS, PDMS/DVB, CW/VB and DVB/CAR/PDMS are shown to be optimal for analysis of the alcohols and carbonyl compounds.

Development of New Surfaces and Materials for Separation Science

  • Linford, Matthew R.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.59.1-59.1
    • /
    • 2015
  • In the Linford group at Brigham Young University we have recently developed three new sets of materials for three different areas of separations science: thin layer chromatography (TLC), high performance liquid chromatography (HPLC), and solid phase microextraction (SPME). First, via microfabrication we have grown patterned carbon nanotube (CNT) forests on planar substrates that we have infiltrated with inorganic materials such as silicon nitride. The coatings on the CNTs are conformal and typically deposited in a process like low pressure chemical vapor deposition. The resulting materials have high surface areas, are porous, and function as effective separation devices, where separations on our new TLC plates are typically significantly faster than on conventional devices. Second, we used the layer-by-layer (electrostatically driven) deposition of poly (allylamine) and nanodiamond onto carbonized poly (divinylbenzene) microspheres to create superficially porous particles for HPLC. Many interesting classes of molecules have been separated with these particles, including various cannabinoids, pesticides, tricyclic antidepressants, etc. Third, we have developed new materials for SPME by sputtering silicon onto cylindrical fiber substrates in a way that creates shadowing of the incoming flux so that materials with high porosity are obtained. These materials are currently outperforming their commercial counterparts. Throughout this work, the new materials we have made have been characterized by X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, scanning electron microscopy, transmission electron microscopy, etc.

  • PDF

배주스의 휘발성 향기성분 (Volatile Flavor Compounds from Pear Juice (Pyrus pyrifolia cv. Niitaka))

  • 김미영;서원호;황영
    • 한국식품영양학회지
    • /
    • 제31권6호
    • /
    • pp.890-896
    • /
    • 2018
  • The aim of this study was to determine volatile flavor compounds in Shingo pear juice. Volatile flavor compounds were analyzed using solid-phase micro-extraction (SPME) - gas chromatography-mass spectrometry (GC-MS). The effect of inorganic salts solution on the extraction ability of the SPME fiber was treated by adding saturated $CaCl_2$ solution at the ratio of 1:20 (v/v) after 0, 60, 120 min of preparing pear juice, respectively. As a result, a total of 22 volatile compounds were identified in Shingo pear juice. Ethyl acetate was found to be the most abundant volatile compound ($13.36{\sim}19.61{\mu}g/kg$), followed in order by hexanal, ethyl hexanoate, ethyl 3-(methylthio)-2-propenoate, ethyl octanoate and 2-hexenal. Total contents of volatile flavor compounds were $31.07{\mu}g/kg$ (control), $40.93{\mu}g/kg$ (0 min), $27.62{\mu}g/kg$ (60 min) and $26.32{\mu}g/kg$ (120 min). This result indicated that the addition of saline solutions could inhibit the enzymatic reaction of volatile flavor compounds effectively when treated as soon as juice preparation.