• Title/Summary/Keyword: SPMDs

Search Result 4, Processing Time 0.015 seconds

Pretreatment Method Development of PCDD/Fs in Sediment Using ASE and SPMDs (ASE와 SPMDs를 이용한 퇴적물중 PCDD/Fs의 전처리법 개발)

  • Chun, Man-Young
    • Environmental Analysis Health and Toxicology
    • /
    • v.22 no.1 s.56
    • /
    • pp.49-55
    • /
    • 2007
  • Three kind of ASE (Accelerated Solvent Extraction) and SPMDs (Semi-Permeable Membrane Devices) combined methods (ASE-SPMDs, ASE-accelerated SPMDs and SPMDs without extraction) and general Soxhlet-GPC were compared each other for the analysis of PCDD/FS in sediment. The average recovery rate of three types ASE and SPMDs combined methods (108.1%) were higher than that of the Soxhlet-GPC (79.5%) for three samples in each method using surrogate internal standards. The average coefficient of variation (10%, $2.1{\sim}25.2%$) for each congener of PCDD/Fs shows the reasonable results. Total PCDD/Fs concentrations after SPMDs without extraction were quite low, but those after ASE-SPMDs and ASE-accelerated SPMDs methods were close to the Soxhlet-GPC. Thus, the ASE-SPMDs and ASE-accelerated SPMDs methods are considered as the excellent pre-treatments method because they need less solvent and time without quality degradation.

Air Monitoring of Persistent Organic Pollutants Using Passive Air Samplers (Passive Air Sampler를 이용한 잔류성 유기오염물질의 대기 모니터링)

  • Choi, Sung-Deuk;Chang, Yoon-Seok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.5
    • /
    • pp.481-494
    • /
    • 2005
  • The monitoring of persistent organic pollutants (POPs) in the atmosphere is a basis for the study of the fate of POPs in multimedia environments. Recently, passive air samplers (PASs) for POPs have been developed. In this paper, we deal with the principle, properties, and applications of the PAS. The principle of PAS, which has no pump, is physical sorption of semi-volatile organic chemicals on various sorbent materials. The PAS is much smaller than a high-volume air sampler and does not need electricity. These properties of the PAS make it possible to conduct various-scaled environmental monitoring all over the world including the Arctic and Antarctic, but the major disadvantage of PAS is its long sampling periods up to 2 years. To date, four kinds of PAS have been developed: polyurethane foam (PUF), polymer-coated glass (POG), semi-permeable membrane devices (SPMDs), and XAD resin-based PAS. Among them, SPMDs have been commercialized and are most widely used now. Meanwhile, the POPs emitted from China have a large potential to influence the levels and fates of POPs in Korea. Since characteristics of PAS are quite useful to monitor long-range transport of POPs, the use of PAS is highly recommended.

Estimation of PCBs Concentrations in Ambient Air Using Pine Needles as a Passive Air Sampler (PAS) (소나무잎을 Passive Air Sampler(PAS)로 이용하여 대기 중 PCBs 농도 추정)

  • Chun, Man-Young
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.4
    • /
    • pp.360-368
    • /
    • 2012
  • Objective: This study was carried out to use pine needles as a passive air sampler (PAS) of atmospheric Polychlorinated Biphenyls (PCBs). Methods: PCB concentrations in ambient air ($C_a$, ng/$m^3$) and deposited on pine needles ($C_p$, ng/g dry) were analyzed simultaneously from June 1 to December 31. Air samples were taken using a low volume PUF active air sampler and the overall average air volume was about 900-1,000 $m^3$. Pine needles were collected at the end of August and December near the air sampler. Results: $C_a$ were higher at higher air temperature and lower chlorinated PCB congeners, but $C_p$ showed irregular distribution. The average PCB sampling rates from air to pine needles were 0.116 (0.002-0.389) $m^3$/day - g dry. Conclusions: A poor correlation was shown between $C_a$ and $C_p$. However, a good correlation was shown between the logarithm of octanol-air partitioning coefficient ($logK_{oa}$) and log ($C_p/C_a$), and the interrelation was better with longer sampling time (June to December) than shorter sampling time (June to August). The average PCB sampling rates from air to pine needles were the lowest with respect to PUF disk, XAD-2 resin and semipermeable membrane devices (SPMDs) PAS. The average ratio ($C_{a-calc}/C_{a-meas}$) of calculated ($C_{a-calc}$) and measured ($C_{a-meas}$) PCB concentration was 0.69 with a shorter sampling time and 1.24 with a longer, so $C_{a-calc}$ was close to $C_{a-meas}$. It was found that pine needles can be used as PAS of atmospheric PCBs, and are especially suitable for long-time PAS.

Application Assessment of Passive Sampling to Monitor Polybrominated Diphenyl Ethers in Water Environment as Alternative Sampling Method for Grab Sampling (수계 중 폴리브롬화 디페닐에테르 모니터링을 위한 Passive Sampling 적용 및 그랩 시료채취법의 대체 활용가능성 평가)

  • Kim, Un-Jung;Seo, Chang Dong;Im, Tae-Hyo;Oh, Jeong-Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.1
    • /
    • pp.45-51
    • /
    • 2015
  • PBDEs (polybrominated diphenyl ehters) are rarely dissolved in water due to their strong hydrophobicity and large molecular mass so not many researches were done in aqueous environment compared to other environmental compartments. However, the mass loading from wastewater treatment plant into aquatic environment, re-suspension from bottom sediment and partitioning from floating particles and colloids may not be negligible. It is, therefore, important but also difficult to investigate PBDEs in water environment. Recent overcoming resolution towards this barrier to monitor hydrophobic organic compounds in aquatic environment is using passive sampling technique like semipermeable membrane device. By using passive sampling, it might be possible to obtain long-term reproducible monitoring result and detect the trace amounts of PBDEs, with controlling fluctuation of surrounding environmental factors during the sampling event. So therefore, this study is purposed to confirm the possibility of using SPMD (semi-permeable membrane device) as water monitoring tool. Grab samples, composite samples and SPMDs were applied in river bank to evaluate the concentration difference and temporal fluctuation by various water sampling method, and to assess the water concentration prediction capability of SPMD for the PBDEs.