• Title/Summary/Keyword: SPHERE irradiation experiment

Search Result 3, Processing Time 0.022 seconds

Advanced interpretation of the SPHERE irradiation experiment with neutronics and fuel performance codes

  • Marc Lainet;Lelio Luzzi;Alessio Magni;Davide Pizzocri;Martina Di Gennaro;Paul Van Uffelen;Arndt Schubert;Elio D'Agata;Vincenzo Romanello;Andrei Rineiski;Karl Sturm;Sander Van Til;Florence Charpin;Alexander Fedorov
    • Nuclear Engineering and Technology
    • /
    • v.56 no.11
    • /
    • pp.4734-4747
    • /
    • 2024
  • The SPHERE experiment aimed at studying the behaviour of Minor Actinide-bearing Driver Fuel (U,Pu,Am)O2-x by comparing sphere-packed and pelletized fuels. The irradiation experiment was performed in the High Flux Reactor at Petten from August 2013 to April 2015, and was followed by post-irradiation examinations up to mid-2017. The present work consists in a new analysis of the SPHERE experiment, focusing on the pelletized fuel, by the means of both neutronics and fuel performance codes. This study is performed in the frame of the European Project PATRICIA. The adopted methodology and the main results achieved, assessed in particular against inert gas-related experimental data, are presented in the paper.

Experimental Study on the Determination of Absorbed dose Index (흡수선량지수결정(吸收線量指數決定)에 관한 실험적(實驗的) 연구(硏究))

  • Jun, Jae-Shik;Rho, Chae-Shik;Ro, Seung-Gy;Ha, Chung-Woo;Yoo, Young-Soo;Lee, Hyun-Duk
    • Journal of Radiation Protection and Research
    • /
    • v.7 no.1
    • /
    • pp.34-48
    • /
    • 1982
  • The prime purpose of this study is to realize an index quantity, absorbed dose index, defined by the ICRU for the characterization of ambient radiation level at any location for the purpose of radiation protection. The experiment has been designed to be carried out in two phases, namely, preliminary and main experiment. In the primary study a 30cm diameter sphere of polyethylene was used, while in the main experiment that of tissue equivalent material was fabricated and used. Both experiments were performed in the gamma-ray fields of $^{137}Cs\;and\;^{60}Co$, and in a neutron beam of thermal column of the TRIGA MARK-II research reactor. In the measurement of gamma-ray absorbed dose TLD-700 $(^{7}LiF)$ chips were used, and for the neutron dose both Au activation foils and TLD chips (TLD-600 $(^{6}LiF)$ and TLD-700 for the discrimination of gamma-ray contribution) were used. Theoretical assessment of the absorbed dose in the sphere phantom has been carried out in accordance with the Ehrlich's idea that deduced on the basis of Burlin's cavity theory in the case of gamma-ray irradiation. For the analysis of neutron dose fluence-KERMA rate conversion method was used. The explanation on the dose assessment is given in detail. Results obtained were numerically and statistically analyzed and the depth dose distributions are presented in the graphic forms with normalized values. In the concluding remarks, the possibility and difficulty of realizing the index quantity, including questions and problems to be solved are mentioned.

  • PDF

A REVIEW OF NEUTRON SCATTERING CORRECTION FOR THE CALIBRATION OF NEUTRON SURVEY METERS USING THE SHADOW CONE METHOD

  • KIM, SANG IN;KIM, BONG HWAN;KIM, JANG LYUL;LEE, JUNG IL
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.939-944
    • /
    • 2015
  • The calibration methods of neutron-measuring devices such as the neutron survey meter have advantages and disadvantages. To compare the calibration factors obtained by the shadow cone method and semi-empirical method, 10 neutron survey meters of five different types were used in this study. This experiment was performed at the Korea Atomic Energy Research Institute (KAERI; Daejeon, South Korea), and the calibration neutron fields were constructed using a $^{252}Californium$ ($^{252}Cf$) neutron source, which was positioned in the center of the neutron irradiation room. The neutron spectra of the calibration neutron fields were measured by a europium-activated lithium iodide scintillator in combination with KAERI's Bonner sphere system. When the shadow cone method was used, 10 single moderator-based survey meters exhibited a smaller calibration factor by as much as 3.1-9.3% than that of the semi-empirical method. This finding indicates that neutron survey meters underestimated the scattered neutrons and attenuated neutrons (i.e., the total scatter corrections). This underestimation of the calibration factor was attributed to the fact that single moderator-based survey meters have an under-ambient dose equivalent response in the thermal or thermal-dominant neutron field. As a result, when the shadow cone method is used for a single moderator-based survey meter, an additional correction and the International Organization for Standardization standard 8529-2 for room-scattered neutrons should be considered.