• Title/Summary/Keyword: SPH simulation

Search Result 85, Processing Time 0.023 seconds

On the Hydraulic Characteristics of Efficient Long Wave Energy Absorber-Eco-breaker 2 (장파 제어체 Eco-breaker 2의 수리특성)

  • Cho, Yong Jun;Kim, Ho Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.547-558
    • /
    • 2008
  • With the advent of super cargo ship due to the explosive increase in the amount of cargo shipped via seas, some mega ports are under construction in South Korea, to accommodate the super cargo ship, and some of them already enter their final phase. To sustain the harbor tranquility, mega ports usually comprise huge vertical type breakwaters which are intrinsically vulnerable to the attack of long waves. In this rationale, we present the chamber type breakwater with a circular curtain wall - Eco-breaker 2, to alleviate the reflection of long waves and numerically investigate the hydraulic characteristics of Eco-breaker 2. As a wave driver, we use the Navier-Stokes eq., the most robust wave driver, using SPH (Smoothed Particle Hydrodynamics) and LES (Large Eddy Simulation). For the verification of numerical results, we also carried out hydraulic model test. It is shown that Eco-breaker 2 can effectively alleviate the reflection of long waves with its inherited large organized eddies encompassing the water chamber and some region off the curtain wall of varying size. It is also shown that the scope and strength of large organized eddies strongly depends on the incident wave period, and the reflection coefficient can be lowered to 0.18 by tuning the size of water chamber such that resident time at the chamber is just short of the half period of incident waves. Based on these results, we present the specification of Eco-breaker 2 to boost its use on the development of water environment friendly harbor worldwide.

Computational fluid dynamic simulation with moving meshes

  • Yun, Kiyun;Kim, Juhan;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.101.2-101.2
    • /
    • 2013
  • We present a new computational fluid dynamic (CFD) simulation code. The code employs the moving and polyhedral unstructured mesh scheme, which is known as a superior approach to the conventional SPH (smoothed particle hydrodynamics) and AMR (adaptive mesh refinement) schemes. The code first generates unstructured meshes by the Voronoi tessellation at every time step, and then solves the Riemann problem for surfaces of every Voronoi cell to update the hydrodynamic states as well as to move former generated meshes. For the second-order accuracy, the MUSCL-Hancock scheme is implemented. To increase efficiency for generating Voronoi tessellation we also develop the incremental expanding method, by which the CPU time is turned out to be just proportional to the number of particles, i.e., O(N). We will discuss the applications of our code in the context of cosmological simulations as well as numerical experiments for galaxy formation.

  • PDF

Unstructured Moving-Mesh Hydrodynamic Simulation

  • Yun, Kiyun;Kim, Juhan;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.65.2-65.2
    • /
    • 2014
  • We present a new hydrodynamic simulation code based on the Voronoi tessellation for estimating the density precisely. The code employs both of Lagrangian and Eulerian description by adopting the movable mesh scheme, which is superior to the conventional SPH (smoothed particle hydrodynamics) and AMR (adaptive mesh refinement) schemes. The code first generates unstructured meshes by the Voronoi tessellation at every time step, and then solves the Riemann problem for all surfaces of each Voronoi cell so as to update the hydrodynamic states as well as to move current meshes. Besides, the IEM (incremental expanding method) is devised to compute the Voronoi tessellation to desired degree of speed, thereby the CPU time is turned out to be just proportional to the number of particles, i.e., O(N). We discuss the applications of our code in the context of cosmological simulations as well as numerical experiments for galaxy formation.

  • PDF

Preliminary results from cosmological hydrodynamic simulations

  • Shin, Ji-Hye;Kim, Ju-Han;Kim, Sung-Soo S.;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.43.1-43.1
    • /
    • 2012
  • We have performed our first cosmological hydrodynamic simulation using the recently developed SPH+GOPTM code that includes radiative cooling/heating, star formation, and supernova feedback. Here we present preliminary results from the simulation $3.4{\times}10^4M_{\odot}$, thus sub-galactic structures, such as satellite galaxies and globular clusters around a host galaxy, can be resolved with more than hundred particles. We follow formation and evolution of the sub-galactic structures in view of their star formation history, merging/accretion rate, and origins.

  • PDF

Characteristics of Constitutive Equations under Rod Impact Analysis by Smoothed Particle Hydrodynamics (SPH를 이용한 봉충돌 해석에서 구성방정식의 특성)

  • 김용환;김용석;이정민
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.62-73
    • /
    • 2003
  • The characteristics of constitutive equations, for hydrocodes, were Investigated by the comparison between the smoothed particle hydrodynamcis simulation and the experiment of rod impact test which resulted in a deformation history of impacting front where high strain and high strain rate dominate. The constitutive equations used in the simulation Is J-C(Johnson-Cook) model, Z-A(Zerilli-Armstrong) model, and S-C-G(Steinberg-Cochran-Guinan) model. The modification of Z-A model, based on the increased effect of strain-rate hardening, showed better correlation with expriment.

Numerical study on the evolution of the spin of spiral galaxies

  • Hwang, Jeong-Sun;Park, Changbom
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.73.1-73.1
    • /
    • 2019
  • We investigate the evolution of the galactic spin of spiral galaxies in various dynamical situations using the N-body/SPH simulations. To do this we first construct a Milky Way-like galaxy model. Then we perform both prograde and retrograde encounters between the spiral galaxy pair. We also conduct a simulation with our galaxy model in isolation for comparison. We find that the circular motion of the disk stars in the inner region of the galaxy decrease clearly when the galaxy experiences strong prograde interactions. Such decrease has not found when the galaxy experiences weak or no interactions. We compare our simulation results with recent observational studies on the galactic spins.

  • PDF

Physics-Based Cloth and Liquid Interaction using GPU Optimization (GPU 최적화를 이용한 물리 기반 옷감과 액체의 상호작용)

  • Seong-Hyeok Moon;Jong-Hyun Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.395-398
    • /
    • 2023
  • 본 논문에서는 물리 기반 옷감 시뮬레이션과 SPH(Smoothed particle hydrodynamics) 기반의 유체 시뮬레이션 간의 상호작용에서 표현되는 다양한 물리적 효과를 GPU 기반으로 빠르게 표현할 수 있는 프레임워크를 제안한다. 기존 기법과는 다르게 수치적 안정성을 개선하기 위해 CCD(Continuous collision detection)를 활용하였으며, 모든 연산이 GPU에서 동작하기 때문에 매우 빠르게 옷감과 유체의 상호작용 장면인 다공성 재질, 기공 흐름, 흡수, 방사, 확산을 모델링할 수 있다.

  • PDF

Design criteria for birdstrike damage on windshield

  • Marulo, Francesco;Guida, Michele
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.2
    • /
    • pp.233-251
    • /
    • 2014
  • Each aircraft have to be certified for a specified level of impact energy, for assuring the capability of a safe flight and landing after the impact against a bird at cruise speed. The aim of this research work was to define a scientific and methodological approach to the study of the birdstrike phenomenon against several windshield geometries. A series of numerical simulations have been performed using the explicit finite element solver code LS-Dyna, in order to estimate the windshield-surround structure capability to absorb the bird impact energy, safely and efficiently, according to EASA Certification Specifications 25.631 (2011). The research considers the results obtained about a parametric numerical analysis of a simplified, but realistic, square flat windshield model, as reported in the last work (Grimaldi et al. 2013), where this model was subjected to the impact of a 1.8 kg bird model at 155 m/s to estimate the sensitivity of the target geometry, the impact angle, and the plate curvature on the impact response of the windshield structure. Then on the basis of these results in this paper the topic is focused about the development of a numerical simulation on a complete aircraft windshield-surround model with an innovative configuration. Both simulations have used a FE-SPH coupled approach for the fluid-structure interaction. The main achievement of this research has been the collection of analysis and results obtained on both simplified realistic and complete model analysis, addressed to approach with gained confidence the birdstrike problem. Guidelines for setting up a certification test, together with a design proposal for a test article are an important result of such simulations.

Analysis on Effect of Energy Mitigation by Arrangement of Cylindrical Countermeasures through 3D Debris Flow Numerical Analysis (3차원 토석류 수치해석을 통한 원통형 대책구조물의 배치조건에 따른 에너지 저감효과 분석)

  • Kim, Beom Jun;Yune, Chan-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.621-630
    • /
    • 2023
  • In this study, to investigate an energy reduction effect by field application of cylindrical baffle arrays, the 3D Debris flow numerical analysis was conducted with various baffle configurations for the simulation of a real-scale valley, where the cylindrical baffle arrays were installed. For this, the valley of the watershed was modeled using terrestrial LiDAR data from the real-scale experiment site. Numerical analysis simulated the flow behavior of debris flow and the structures using Smooth Particle Hydrodynamics (SPH) technique of ABAQUS (Ver. 2021). The numerical analysis results that the case without cylindrical baffle arrays had a similar velocity change to that of the real-scale experiment. Also, the installation of baffles significantly reduced the frontal velocity of debris flow. Furthermore, increasing the baffle height increased the downstream energy reduction because of the higher flow impedance of taller baffles.

Efficient Treatment of Clumping and Stiffness for Wet Hair and Fur Simulation (젖은 헤어와 털 시뮬레이션을 위한 효율적인 응집력과 강성 처리)

  • Kim, Jong-Hyun;Lee, Jung
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.1
    • /
    • pp.9-16
    • /
    • 2017
  • Simulating the clumping and stiffness of wet hair or fur is a challenging problem. The dynamics of wet hair or fur is characterized by the clumping and stiffness at the tip, which is easily seen in running animals or headbanging scenes. Existing methods address these phenomenon within pre-set scenarios. But there is no consensus on the method of depicting the details of wet hair. Hence, the present paper proposes a new method of modeling the clumping and stiffness of wet hair or fur. Previous studies focused on modeling the absorption of water into hair or fur, whereas this paper highlights a realistic simulation of wet hair. Unlike dry hair strands, wet hair strands adjacent to one another are subjected to the clumping force and gather together, while at the same time becoming stiff as the saturation of water increases. The proposed method builds on the surface tension model based on SPH (smoothed particle hydrodynamics) to simulate the clumping force and to adjust the hair elasticity by giving stiffness constraints. The present method enables a realistic simulation of wet hair by maintaining the clumping force of the wet hair even in dynamic motions, and by simulating the stiffness of hair in line with water saturation.