• Title/Summary/Keyword: SPATIAL

Search Result 24,474, Processing Time 0.051 seconds

Retrieval of Vegetation Health Index for the Korean Peninsula Using GK2A AMI (GK2A AMI를 이용한 한반도 식생건강지수 산출)

  • Lee, Soo-Jin;Cho, Jaeil;Ryu, Jae-Hyun;Kim, Nari;Kim, Kwangjin;Sohn, Eunha;Park, Ki-Hong;Jang, Jae-Cheol;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.2
    • /
    • pp.179-188
    • /
    • 2022
  • Global warming causes climate change and increases extreme weather events worldwide, and the occurrence of heatwaves and droughts is also increasing in Korea. For the monitoring of extreme weather, various satellite data such as LST (Land Surface Temperature), TCI (Temperature Condition Index), NDVI (Normalized Difference Vegetation Index), VCI (Vegetation Condition Index), and VHI (Vegetation Health Index) have been used. VHI, the combination of TCI and VCI, represents the vegetation stress affected by meteorological factors like precipitation and temperature and is frequently used to assess droughts under climate change. TCI and VCI require historical reference values for the LST and NDVI for each date and location. So, it is complicated to produce the VHI from the recent satellite GK2A (Geostationary Korea Multi-Purpose Satellite-2A). This study examined the retrieval of VHI using GK2A AMI (Advanced Meteorological Imager) by referencing the historical data from VIIRS (Visible Infrared Imaging Radiometer Suite) NDVI and LST as a proxy data. We found a close relationship between GK2A and VIIRS data needed for the retrieval of VHI. We produced the TCI, VCI, and VHI for GK2A during 2020-2021 at intervals of 8 days and carried out the interpretations of recent extreme weather events in Korea. GK2A VHI could express the changes in vegetation stress in 2020 due to various extreme weather events such as heatwaves (in March and June) and low temperatures (in April and July), and heavy rainfall (in August), while NOAA (National Oceanic and Atmospheric Administration) VHI could not well represent such characteristics. The GK2A VHI presented in this study can be utilized to monitor the vegetation stress due to heatwaves and droughts if the historical reference values of LST and NDVI can be adjusted in a more statistically significant way in the future work.

The Origin of Hajodae(河趙臺) in Yangyang(襄陽) and the Way of Enjoying Scenic Sites(名勝) According to the Landscape in Joseon Dynasty (조선시대 양양(襄陽) 하조대(河趙臺)의 유래와 경관에 따른 명승의 향유 방식)

  • Kim, Se-Ho
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.40 no.1
    • /
    • pp.55-64
    • /
    • 2022
  • This study aims to shed light on the cultural history of Hajodae(河趙臺) enjoyed by writers of the Joseon Dynasty by analyzing the origin and the contents of the landscape based on the literature materials of Hajodae in Yangyang(襄陽). The results of the study are as follows. First, Hajodae is a space that is said to have been visited by Ha Ryun(河崙) and Jo Jun(趙浚). However, since this story has not been confirmed in the literature, various opinions coexisted in history. Jo Wi-Han(趙緯韓) quoted the opinions of aged people who lived in Yangyang, saying that it could be Jo In-Byeok(趙仁壁), not Jo Jun(趙浚), and Jo Deok-Rin(趙德鄰) recorded it as "遐眺臺", which means "a stand for a distance view." There is a need to clearly present the origin of Hajodae by revealing the literary authority. Second, Hajodae was talked about as the best scenic site in Gwandong(關東) in the middle of the Joseon Dynasty. during the mid-Joseon Dynasty. The writers of the time mentioned Hajodae as one of the best scenic sites in Gwandong, which soon became a symbol of Yangyang. These records of Hajodae show a relatively decreasing trend entering the late Joseon Dynasty. It is believed to be the result of the slight degrading in the status of Hajodae as the Eight Views of Gwandong were established and Naksansa Temple(洛山寺) gained fame. Third, the writers of Joseon enjoyed the scenic sites through various landscapes of Hajodae. The open terrain on three sides allowed a sea view and provided an opportunity to develop a great spirit or to reflect on oneself. On the other hand, the strange rock formations and cliffs, which correspond to a close-up view, drew the attention of tourists, and the Rosa rugosa Thunb. blooming in the Hajodae area was enough to show a bizarre charm. This shows the various charms of Hajodae, suggesting that the management of such landscape is necessary. Fourth, a Chinese poem about Hajodae shows the spatial meaning of Hajodae. Looking into all sides of the Chinese poem about Hajodae, a case of unburdening one's mind on the landscape, and the aspect a person compared oneself to the natural landscape or projected one's consciousness onto it, and a case of recalling Ha Ryun and Jo Jun, illustrious retainers in the early Joseon Dynasty are confirmed. It can be seen that it results in the aspect of expressing one's impressions and looking back on history through the landscape.

A The Visualization of Semantic Context in the Film (영화 <이다>에 나타난 의미적 맥락의 시각화)

  • Kim, Tae-Kyue;Kim, Kyu-Nam
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.8
    • /
    • pp.145-159
    • /
    • 2021
  • is a contemporary experimental film that forms ambiguity in the narrative and the psychological motivation of the characters, destroys linear temporality, and reminds of manipulation possibilities in digital images through varied techniques, and it carries implication by the fact that the transformation process of human subjects and self-awareness are connected to social trauma and makes way to infer by comparing it to the historical contexts of other nations or societies. centers on the space outside the screen, absent space, and the intrinsic meaning within the space and the frame and shares the information in the visible space and the space outside the screen and arouses an active perceptual process so that the audience can deduce the information that is not presented. The film visualized the historical meaning without describing the background of the times in detail and aimed to express the conflicts and worries between the god, a transcendental existence, with humans, which are marginal beings, within the conflicting structure among humans. Moreover, attempted to resolve the sadness of loss and absence through the spatial aesthetics and the film presented the progression of the situation through the contrast of the characters and also the comparison between light and darkness. This study intends to make an attempt of interpreting the realm involving personal (characters) stories and the social and historical backgrounds together with the religious sphere and discuss the visualization of the semantic context. In addition, this study analyzed the sequence of the scenes in , which reconstructs identity and historical cases and religious values to observe the meaning and characteristics and closely analyze the general meaning pursued by the film. discussed the issues of trauma that individuals, regions, and nations confront as a representation and interpretation of the trauma connoted in the film, and consideration can be provided about the implication concerning the situation and context in South Korea. Furthermore, the film placidly discusses the growth and agony in humans and the society without expressing it excessively, so it will be a valuable research result to inspire the trend of creating films that incorporate new imaging technology and original visualization techniques.

Observation of Ice Gradient in Cheonji, Baekdu Mountain Using Modified U-Net from Landsat -5/-7/-8 Images (Landsat 위성 영상으로부터 Modified U-Net을 이용한 백두산 천지 얼음변화도 관측)

  • Lee, Eu-Ru;Lee, Ha-Seong;Park, Sun-Cheon;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1691-1707
    • /
    • 2022
  • Cheonji Lake, the caldera of Baekdu Mountain, located on the border of the Korean Peninsula and China, alternates between melting and freezing seasonally. There is a magma chamber beneath Cheonji, and variations in the magma chamber cause volcanic antecedents such as changes in the temperature and water pressure of hot spring water. Consequently, there is an abnormal region in Cheonji where ice melts quicker than in other areas, freezes late even during the freezing period, and has a high-temperature water surface. The abnormal area is a discharge region for hot spring water, and its ice gradient may be used to monitor volcanic activity. However, due to geographical, political and spatial issues, periodic observation of abnormal regions of Cheonji is limited. In this study, the degree of ice change in the optimal region was quantified using a Landsat -5/-7/-8 optical satellite image and a Modified U-Net regression model. From January 22, 1985 to December 8, 2020, the Visible and Near Infrared (VNIR) band of 83 Landsat images including anomalous regions was utilized. Using the relative spectral reflectance of water and ice in the VNIR band, unique data were generated for quantitative ice variability monitoring. To preserve as much information as possible from the visible and near-infrared bands, ice gradient was noticed by applying it to U-Net with two encoders, achieving good prediction accuracy with a Root Mean Square Error (RMSE) of 140 and a correlation value of 0.9968. Since the ice change value can be seen with high precision from Landsat images using Modified U-Net in the future may be utilized as one of the methods to monitor Baekdu Mountain's volcanic activity, and a more specific volcano monitoring system can be built.

Validation of GOCI-II Products in an Inner Bay through Synchronous Usage of UAV and Ship-based Measurements (드론과 선박을 동시 활용한 내만에서의 GOCI-II 산출물 검증)

  • Baek, Seungil;Koh, Sooyoon;Lim, Taehong;Jeon, Gi-Seong;Do, Youngju;Jeong, Yujin;Park, Sohyeon;Lee, Yongtak;Kim, Wonkook
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.609-625
    • /
    • 2022
  • Validation of satellite data products is critical for subsequent analysis that is based on the data. Particularly, performance of ocean color products in turbid and shallow near-land ocean areas has been questioned for long time for its difficulty that stems from the complex optical environment with varying distribution of water constituents. Furthermore, validation with ship-based or station-based measurements has also exhibited clear limitation in its spatial scale that is not compatible with that of satellite data. This study firstly performed validation of major GOCI-II products such as remote sensing reflectance, chlorophyll-a concentration, suspended particulate matter, and colored dissolved organic matter, using the in-situ measurements collected from ship-based field campaign. Secondly, this study also presents preliminary analysis on the use of drone images for product validation. Multispectral images were acquired from a MicaSense RedEdge camera onboard a UAV to compensate for the significant scale difference between the ship-based measurements and the satellite data. Variation of water radiance in terms of camera altitude was analyzed for future application of drone images for validation. Validation conducted with a limited number of samples showed that GOCI-II remote sensing reflectance at 555 nm is overestimated more than 30%, and chlorophyll-a and colored dissolved organic matter products exhibited little correlation with in-situ measurements. Suspended particulate matter showed moderate correlation with in-situ measurements (R2~0.6), with approximately 20% uncertainty.

Exploring A Research Trend on Entrepreneurial Ecosystem in the 40 Years of the Asia Pacific Journal of Small Business for the Development of Ecosystem Measurement Framework (「중소기업연구」 40년 동안의 창업생태계 연구 동향 고찰 및 측정모형 개발을 위한 탐색적 연구)

  • Seo, Ribin;Choi, Kyung Cheol;Byun, Youngjo
    • Korean small business review
    • /
    • v.42 no.4
    • /
    • pp.69-102
    • /
    • 2020
  • Shedding new light on the research trend on entrepreneurial ecosystems in the 40-year history of the Asia Pacific Journal of Small Business, this study aims at exploring a potential measurement framework of ecological inputs and outputs in an entrepreneurial ecosystem that promotes entrepreneurship at geographical and spatial levels. As a result of the analysis of research on the entrepreneurial ecosystem in the journal, we found that prior studies emphasized the managerial importance of various ecological factors on the premise of possible causalities between the factors and entrepreneurship. However, empirical research to verify the premised causality has been underexplored yet. This literature gap may lead to unbalanced development of conceptual and case studies that identify requirements for successful entrepreneurial ecosystems based on experiential facts, thereby hindering the generalization of the research results for practical implications. In that there is a growing interest in creating and operating productive entrepreneurial ecosystems as an innovation engine that drives national and regional economic growth, it is necessary to explore and develop the measurement framework for ecological factors that can be used in future empirical research. Hereupon, we apply a conceptual model of 'input-output-outcome-impact' to categorize individual environmental factors identified in prior studies. Based on the model. We operationalize ecological input factors as the financial, intellectual, institutional, and social capitals, and ecological output factors as the establishment-based, innovation-based, and performance-based entrepreneurship. Also, we propose several longitudinal databases that future empirical research can use in analyzing the potential causality between the ecological input and output factors. The proposed framework of entrepreneurial ecosystems, which focuses on measuring ecological input and output factors, has a high application value for future research that analyzes the causality.

Comparison of Ultrasound Image Quality using Edge Enhancement Mask (경계면 강조 마스크를 이용한 초음파 영상 화질 비교)

  • Jung-Min, Son;Jun-Haeng, Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.157-165
    • /
    • 2023
  • Ultrasound imaging uses sound waves of frequencies to cause physical actions such as reflection, absorption, refraction, and transmission at the edge between different tissues. Improvement is needed because there is a lot of noise due to the characteristics of the data generated from the ultrasound equipment, and it is difficult to grasp the shape of the tissue to be actually observed because the edge is vague. The edge enhancement method is used as a method to solve the case where the edge surface looks clumped due to a decrease in image quality. In this paper, as a method to strengthen the interface, the quality improvement was confirmed by strengthening the interface, which is the high-frequency part, in each image using an unsharpening mask and high boost. The mask filtering used for each image was evaluated by measuring PSNR and SNR. Abdominal, head, heart, liver, kidney, breast, and fetal images were obtained from Philips epiq5g and affiniti70g and Alpinion E-cube 15 ultrasound equipment. The program used to implement the algorithm was implemented with MATLAB R2022a of MathWorks. The unsharpening and high-boost mask array size was set to 3*3, and the laplacian filter, a spatial filter used to create outline-enhanced images, was applied equally to both masks. ImageJ program was used for quantitative evaluation of image quality. As a result of applying the mask filter to various ultrasound images, the subjective image quality showed that the overall contour lines of the image were clearly visible when unsharpening and high-boost mask were applied to the original image. When comparing the quantitative image quality, the image quality of the image to which the unsharpening mask and the high boost mask were applied was evaluated higher than that of the original image. In the portal vein, head, gallbladder, and kidney images, the SNR, PSNR, RMSE and MAE of the image to which the high-boost mask was applied were measured to be high. Conversely, for images of the heart, breast, and fetus, SNR, PSNR, RMSE and MAE values were measured as images with the unsharpening mask applied. It is thought that using the optimal mask according to the image will help to improve the image quality, and the contour information was provided to improve the image quality.

Study on Spatial Change of Urban Forest Considering Definition of Urban Area in South Korea (도시지역 정의에 따른 도시숲의 공간적 변화에 관한 연구)

  • Doo-Ahn, KWAK;So-Hee, PARK
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.4
    • /
    • pp.19-31
    • /
    • 2022
  • The definition of urban forest is described as all forest and trees except the Natural Parks throughout whole territory in Urban Forest Act. But the concept of urban forest in the law differs from general awareness by Korean citizen and from definitions of other countries. For discussing such differences of urban forest definition, it was tested how much urban forest area would be changed according to the various definition of urban area. The urban area was defined to be four scenarios in this study in consideration of "urban area" by National Land Planning and Utilization Act (NLPUA), 300m buffered boundary from the "urban area" proposed by World Health Organization (WHO) and forest watershed area. In the scenario 1, including forest watershed intersected with "urban area" by NLPUA, urban forest area was estimated at 1.83 million ha in which urban forest area per person was 386㎡. In the scenario 2, including forest watershed intersected with 300m buffered boundary from the "urban area" by NLPUA, urban forest area was estimated at 1.92 million ha in which urban forest area per person was 405㎡. In the scenario 3, including forest watershed intersected with "urban area" placed within administration boundary (Eup·Dong districts), urban forest area was estimated at 1.08 million ha in which urban forest area per person was 230㎡. In the scenario 4, including forest watershed intersected with 300m buffered boundary from "urban area" placed within administration boundary, urban forest area was estimated at 1.20 million ha in which urban forest area per person was 256㎡. Therefore, the boundary of urban area should be agreed clearly prior to defining the urban forest area for avoiding unclear area calculated according to different definitions.

Estimation of grid-type precipitation quantile using satellite based re-analysis precipitation data in Korean peninsula (위성 기반 재분석 강수 자료를 이용한 한반도 격자형 확률강수량 산정)

  • Lee, Jinwook;Jun, Changhyun;Kim, Hyeon-joon;Byun, Jongyun;Baik, Jongjin
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.6
    • /
    • pp.447-459
    • /
    • 2022
  • This study estimated the grid-type precipitation quantile for the Korean Peninsula using PERSIANN-CCS-CDR (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System-Climate Data Record), a satellite based re-analysis precipitation data. The period considered is a total of 38 years from 1983 to 2020. The spatial resolution of the data is 0.04° and the temporal resolution is 3 hours. For the probability distribution, the Gumbel distribution which is generally used for frequency analysis was used, and the probability weighted moment method was applied to estimate parameters. The duration ranged from 3 hours to 144 hours, and the return period from 2 years to 500 years was considered. The results were compared and reviewed with the estimated precipitation quantile using precipitation data from the Automated Synoptic Observing System (ASOS) weather station. As a result, the parameter estimates of the Gumbel distribution from the PERSIANN-CCS-CDR showed a similar pattern to the results of the ASOS as the duration increased, and the estimates of precipitation quantiles showed a rather large difference when the duration was short. However, when the duration was 18 h or longer, the difference decreased to less than about 20%. In addition, the difference between results of the South and North Korea was examined, it was confirmed that the location parameters among parameters of the Gumbel distribution was markedly different. As the duration increased, the precipitation quantile in North Korea was relatively smaller than those in South Korea, and it was 84% of that of South Korea for a duration of 3 h, and 70-75% of that of South Korea for a duration of 144 h.

A study for improvement of far-distance performance of a tunnel accident detection system by using an inverse perspective transformation (역 원근변환 기법을 이용한 터널 영상유고시스템의 원거리 감지 성능 향상에 관한 연구)

  • Lee, Kyu Beom;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.3
    • /
    • pp.247-262
    • /
    • 2022
  • In domestic tunnels, it is mandatory to install CCTVs in tunnels longer than 200 m which are also recommended by installation of a CCTV-based automatic accident detection system. In general, the CCTVs in the tunnel are installed at a low height as well as near by the moving vehicles due to the spatial limitation of tunnel structure, so a severe perspective effect takes place in the distance of installed CCTV and moving vehicles. Because of this effect, conventional CCTV-based accident detection systems in tunnel are known in general to be very hard to achieve the performance in detection of unexpected accidents such as stop or reversely moving vehicles, person on the road and fires, especially far from 100 m. Therefore, in this study, the region of interest is set up and a new concept of inverse perspective transformation technique is introduced. Since moving vehicles in the transformed image is enlarged proportionally to the distance from CCTV, it is possible to achieve consistency in object detection and identification of actual speed of moving vehicles in distance. To show this aspect, two datasets in the same conditions are composed with the original and the transformed images of CCTV in tunnel, respectively. A comparison of variation of appearance speed and size of moving vehicles in distance are made. Then, the performances of the object detection in distance are compared with respect to the both trained deep-learning models. As a result, the model case with the transformed images are able to achieve consistent performance in object and accident detections in distance even by 200 m.