• Title/Summary/Keyword: SP6 Patch

Search Result 7, Processing Time 0.022 seconds

Mild stimulation of stomach 36 acupuncture point by organic nanoscale SP6 patch improves cellular physiologic functional status of different organs

  • Nazeran, Homer;Blake-Greenberg, Sherry;Haltiwanger, Emily
    • CELLMED
    • /
    • v.2 no.1
    • /
    • pp.10.1-10.6
    • /
    • 2012
  • Acupuncture works by stimulating peripheral sensory nerves and their endings causing an increase in cutaneous blood flow and microcirculation, as well as release of neurotransmitters, neuropeptides, and hormones. SP6 Patch is a nanoscale nontransdermal device that mildly stimulates Stomach 36 (zusanli) and other acupuncture points. As stimulation of these points has been indicated to have an effect on hypothalamic function, it is of great research interest to investigate the effect of SP6 Patch on the physiology of organs that are affected by hypothalamic regulation. Bioelectrical tissue impedance data indicative of cellular physiologic organ function, using an Electro Interstitial Scan (EIS) system, were acquired from hypothalamus, pancreas, liver, intestines, kidneys, thyroid and adrenal glands in 10 (1 male, 9 females) volunteers while wearing the SP6 Patch daily for 1 week. EIS testing was performed at baseline with no patch, 30 min after wearing the patch, and after wearing the patch 12 h/day for 1 week. Subjects were instructed to keep well hydrated during the study period. All subjects served as their own control. The hypothesis was: The SP6 Patch worn 12 h/day on the Stomach 36 acupuncture point for 1 week, may significantly improve cellular physiologic functional status of different organs measured by EIS. All tested organs achieved significant improvement in their functional physiologic status after wearing the SP6 Pach 12 h/day for 1 week compared to baseline with an overall average statistical power > 89%. Based upon these results the hypothesis was accepted as true.

Control Effects of Microbial Products on Pythium Blight, Brown Patch and Dollar Spot of Creeping Bentgrass (Creeping Bentgrass에서 미생물제에 의한 Pythium Blight, Brown Patch 및 Dollar Spot 방제 효과)

  • 황연성;최준수;김영호
    • Korean Journal Plant Pathology
    • /
    • v.12 no.2
    • /
    • pp.237-244
    • /
    • 1996
  • 길항곰팡이 3종(Aspergillus sp. A101, Penicillium sp. B202, Trichoderma sp. C303), 길항세균 3종(Arthrobacter sp. AN303)또는 이들 모두의 혼합균주를 배양하여 creeping bentgrass 양묘장에 처리하여 Pythium blight, brown patch 및 dollar spot의 방제효과를 조사하였다. 또한 길항미생물 6종의 배양액을 살균제와 병용하여 그린에 살포하여 이들 토양병에 대한 방제효과를 조사하였다. 양묘장에서는 미생물의 종류에 관계없이 Pythium blight 억제효과가 커 3회 이상 미생물제 처리시 병이 전혀 발생하지 않았다. 그러나 brown patch와 dollar spot은 미생물제에 의한 방제효과가 크지 않았으며, 살균제에 의해 효과적으로 방제되었다. 미생물제와 살균(Pythium blight 방제용 살균제 제외)를 병용하여 처리한 그린에서는 살균제 단독처리와 비교할 때 brown patch는 유의적으로 억제되었고 Pythium blight와 dollar spot은 차이가 없었다.

  • PDF

Turfgrass Probiotics Reduce Population of Large Patch Pathogen and Improve Growth of Zoysiagrass (유용미생물 처리에 따른 들잔디 재배지의 갈색퍼짐병 병원균 감소와 잔디생육 촉진 효과)

  • Bae, Eun-Ji;Cheon, Chang Wook;Hong, A-Reum;Lee, Kwang-Soo;Kwak, Youn-Sig
    • Weed & Turfgrass Science
    • /
    • v.6 no.3
    • /
    • pp.249-261
    • /
    • 2017
  • To prevent large patch disease, caused by Rhizoctonia solani AG-2-2, in zoysiagrass a fungicide, Tebuconazole and three microbial agents Streptomyces sp. Burkholderia sp. and Streptomyces sp. S8 were applied in commercial turfgrass cultivation field in Sanchung, Gyeongnam, Korea. All treatments showed 50% reduced the pathogen population in thatch layer throughout the yearly cultivation period. Not only reduced the pathogen population, Tebuconazole, Streptomyces sp. Burkholderia sp. and Streptomyces sp. S8 treatment also enhanced turfgrass growth, chlorophyll and proline content. Malondialdehyde contents in each treatment was reduced from 6.2~28.9% when compared with the control. Taken together, reduction of pathogen population in soil lowered the disease incidence or severity, and allowed the turfgrass developed as normal condition. The results suggested that the selected microbial agents may use as biological control and growth promotion agents for the Zoysia turfgrass.

Effect of Jehotang Extract on the Growth of Intestinal Bacteria and Immunostimulation (제호탕의 장내 세균 및 면역 활성에 미치는 연구)

  • Ji, Myoung-Soon;Park, Min-Jung;Lee, Mi-Young;Kim, Jong-Goon;Ko, Byoung-Seob
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.104-108
    • /
    • 2006
  • Water extracts of Jehotang were evaluated for their growth-promoting effects on Bifidobacterium longum, Lactobacillus sp., L. acidophilus, and Clostridium perfringens. Addition of Jehotang water extract to modified EG media at 0.1 mg/mL increased growths of B. longum, Lactobacillus sp., and L. acidophilus, with 1.8-fold increase in growth of L. acidophilus compared to that of control. Studies on these strains by agar diffusion method showed Lactobacillus sp. and L. acidophilus were activated by addition of Jehotang extract at 10 mg/disc. Proliferation responses of mice splenocytes and Peyer's patch cells to ConA by LPS-stimulation at 500 mg/kg B.W./day Jehotang extract were investigated in vitro. Upon treatment of 1 mg/mL Jehotang water extract to mice, proliferations of splenocytes and Peyer's patch cells increased 1.4- and 1.6-fold compared to control, respectively. In mice administered Jehotang extract, production of intestinal secretory IgA (sIgA) increased 2.4-fold compared to control. These results indicate water extract of Jehotang stimulated intestinal immune system of mice. In mice treated with Jehotang extract, production of lymphocytes was 4% lower, whereas those of granulocytes and platelets were 4% and slightly higher than control, respectively.

Inhibition of in Vitro Growth of Three Soil-borne Turfgrass Diseases by Antagonistic Bacteria from Composted Liquid Manure (가축분뇨액비의 길항미생물에 의한 토양전염성 병원균의 생육억제 효과)

  • Ryu, Ju Hyun;Shim, Gyu Yul;Kim, Ki Sun
    • Horticultural Science & Technology
    • /
    • v.32 no.6
    • /
    • pp.879-886
    • /
    • 2014
  • This study was conducted to test in vitro the antagonistic effect of composted liquid manure (CLM) against soil-borne turfgrass pathogenic fungi, Rhizoctonia solani AG-2-2 (IIIB) (brown patch), R. solani AG-2-2 (IV) (large patch), and Sclerotinia homoeocarpa (dollar spot) for environmentally friendly turfgrass management. CLMs were collected from 9 livestock excretion treatment facilities around the country including Gunwi (GW), Hapcheon (HC), Hoengseong (HS), Icheon (IC), Iksan (IS), Muan (MA), Nonsan (NS), and Yeoju (YJ). CLMs of IC, GW, and IS showed s ignificant (p < 0.05) mycelium growth inhibition that was 17.8%, 20.4%, and 48.0% against R. solani AG-2-2 (IIIB), R. solani AG-2-2 (IV), and S. homoeocarpa, respectively. A t otal of 110 bacterial isolates were obtained from the CLMs that showed antagonistic effects. Among them, 5, 4, and 10 microbe isolates showed promising antifungal activity against mycelium growth of R. solani AG-2-2 (IIIB), R. solani AG-2-2 (IV), and S. homoeocarpa, respectively. The bacterial isolates ICIIIB60, GWIV70, and ISSH20 effectively inhibited the mycelial growth of three soil-borne turfgrass pathogens. Selected bacterial isolates were identified as Alcaligenes sp., Bacillus licheniformis Ab2, and B. subtilis C7-3 through 16s rDNA gene sequence analysis. Among 5 fungicides, the most compatible fungicide with ICIIIB60, GWIV70, and ISSH20 was tebuconazol, toclofos-methyl and toclofos-methyl, respectively. These findings suggested that CLMs could be effectively used not only as organic liquid fertilizer sources but also as biological control agents for soil-borne turfgrass diseases such as brown patch, large patch, and dollar spot.

Fully automatic Segmentation of Knee Cartilage on 3D MR images based on Knowledge of Shape and Intensity per Patch (3차원 자기공명영상에서 패치 단위 형상 및 밝기 정보에 기반한 연골 자동 영역화 기법)

  • Park, Sang-Hyun;Lee, Soo-Chan;Shim, Hack-Joon;Yun, Il-Dong;Lee, Sang-Uk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.75-81
    • /
    • 2010
  • The segmentation of cartilage is crucial for the diagnose and treatment of osteoarthritis (OA), and has mostly been done manually by an expert, requiring a considerable amount of time and effort due to the thin shape and vague boundaries of the cartilage in MR (magnetic resonance) images. In this paper, we propose a fully automatic method to segment cartilage in a knee joint on MR images. The proposed method is based on a small number of manually segmented images as the training set and comprised of an initial per patch segmentation process and a global refinement process on the cumulative per patch results. Each patch for per patch segmentation is positioned by classifying the bone-cartilage interface on the pre-segmented bone surface. Next, the shape and intensity priors are constructed for each patch based on information extracted from reference patches in the training set. The ratio of influence between the shape and intensity priors is adaptively determined per patch. Each patch is segmented by graph cuts, where energy is defined based on constructed priors. Finally, global refinement is conducted on the global cartilage using the results of per patch segmentation as the shape prior. Experimental evaluation shows that the proposed framework provide accurate and clinically useful segmentation results.

A Depth-based Disocclusion Filling Method for Virtual Viewpoint Image Synthesis (가상 시점 영상 합성을 위한 깊이 기반 가려짐 영역 메움법)

  • Ahn, Il-Koo;Kim, Chang-Ick
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.48-60
    • /
    • 2011
  • Nowadays, the 3D community is actively researching on 3D imaging and free-viewpoint video (FVV). The free-viewpoint rendering in multi-view video, virtually move through the scenes in order to create different viewpoints, has become a popular topic in 3D research that can lead to various applications. However, there are restrictions of cost-effectiveness and occupying large bandwidth in video transmission. An alternative to solve this problem is to generate virtual views using a single texture image and a corresponding depth image. A critical issue on generating virtual views is that the regions occluded by the foreground (FG) objects in the original views may become visible in the synthesized views. Filling this disocclusions (holes) in a visually plausible manner determines the quality of synthesis results. In this paper, a new approach for handling disocclusions using depth based inpainting algorithm in synthesized views is presented. Patch based non-parametric texture synthesis which shows excellent performance has two critical elements: determining where to fill first and determining what patch to be copied. In this work, a noise-robust filling priority using the structure tensor of Hessian matrix is proposed. Moreover, a patch matching algorithm excluding foreground region using depth map and considering epipolar line is proposed. Superiority of the proposed method over the existing methods is proved by comparing the experimental results.