• Title/Summary/Keyword: SOSTTC

Search Result 5, Processing Time 0.023 seconds

Improved Super-Orthogonal Space Time Codes for Fast Rayleigh Fading Channels (고속 레일리 페이딩 채널에 적합한 개선된 초직교 시공간 격자 부호)

  • Kim, Chang-Joong;Heo, Seo-Weon;Lee, Ho-Kyoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9C
    • /
    • pp.820-825
    • /
    • 2007
  • Super-orthogonal space-time trellis code (SOTTC) uses the expanded set of the orthogonal space-time block code to obtain coding gain and diversity gain without loss of transmit rate. In SOSTTCs, signal set expansions are performed by rotating the first column of the code matrix. The rotating phases used previously were selected to avoid the signal constellation expansion rather than the performance improvement. In this paper, we make a design criterion to select the proper rotating phase to improve the performance of SOSTTCs for fast Rayleigh fading channels. In addition, we design improved SOSTTCs by using the proper rotating phase. Simulation results are also provided to confirm our SOSTTCs are superior to the previous SOSTTCs in the view of BER performance.

Performance Evaluation of Space Time Frequency OFDM System using Super-Orthogonal Space Time Trellis Code Transmission Matrix (Super-Orthogonal STTC 전송 행렬을 이용한 STF-OFDM 시스템의 성능 평가)

  • Seo, Myoung-Seok;Shin, Chul-Min;Kim, Yoo-Mi;Kwak, Kyung-Sub
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.5 no.3 s.11
    • /
    • pp.29-39
    • /
    • 2006
  • In this paper, we propose an efficient method to detect the signal and evaluate performance of the system in frequency selective fading channel. We combine proposed system with OFDM (Orthogonal Frequency Division Multiplexing) to improve performance of the system. First, we study the SOSTTC-OFDM system using two transmit antenna and one receive antenna, and compare performance of the proposed space-time coded OFDM with that of previous system. We expand this system to the system using four transmit antennas with the proposed decoding method. Simulation results show that the proposed decoding method can detect the signal efficiently, and we identify that the performance of the proposed system is shown with varying doppler frequency in frequency selective fading channel.

  • PDF

BICM Applied to Improved SOSTBC (개선된 SOSTBC 적용된 BICM)

  • Park, Jong-Chul;Kim, Chang-Joong;Lee, Ho-Kyoung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.3
    • /
    • pp.34-39
    • /
    • 2008
  • In this paper, we propose a bit-interleaved coded modulation (BICM) a lied to improved super-orthogonal space-time block code(SOSTBC). The proposed system achieves a greater diversity gain than that of super-orthogonal space-time trellis code (SOSTTC) with similar decoding complexity. Since, using the improved SOSTBC, the bit diversity carl be full diversity of SOSTBC. In contrast, BICM applied to Jafarkhani's SOSTBC is difficult to achieve a greater diversity gain than that of SOSTTC, because every bit diversity of the system is 1.

BICM Applied to Expanded OSTBC (확장된 OSTBC에 적용된 BICM)

  • Kim, Chang-Joong;Park, Jonng-Chul;Lee, Ho-Kyoung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.4
    • /
    • pp.64-69
    • /
    • 2009
  • Bit-interleaved coded modulation(BICM) applied to Alamouti's orthogonal space-time block code(OSIBC) has a rate loss problem In this paper, we expand orthogonal space-time block code(OSTBC) and apply bit-interleaved coded modulation (BICM) to expanded OSTBC(XOSIBC) to obtain a diversity gain without a rate loss. Binary phase shift keying(BPSK) design example is presented. Simulation results are also provided.