• Title/Summary/Keyword: SOMAS

Search Result 7, Processing Time 0.02 seconds

The Improvement for Accuracy of SOMAS Data (SOMAS Data 정확도 확보를 위한 개선)

  • Lee, Byung-Nam;Moon, Bong-Soo;Kwon, Tae-Won
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.296-298
    • /
    • 2002
  • 현재 진행되고 있는 전력산업의 구조개편, 전력시장의 경쟁도입은 전력계통에서는 물론 시장참여자들이 경쟁적 전력시장에 참여해 합리적으로 전력거래를 하기 위한 실시간의 정확한 Data를 절대적으로 필요로 하고 있다. 그러나 기존의 SOMAS(변전소운전실적관리 시스템 ; Substation Operating Results Management System)는 변전소 운전실적에 대한 Data를 월보단위로 수작업 입력하게 되어있어 입력된 Data의 정확도 확보가 곤란 하였으며 자료의 부정확으로 인한 이용에 어려움이 있었다. 이에 00년 12월 SCADA와 연계하여 5분정도의 주기로 전송되는 전국 각 변전소의 계통운영 실적을 실시간으로 받아 이를 가공한 후 Intranet을 통하여 제공함으로써 Data의 정확도가 향상되었으며 관련 업무에 활용이 가능하게 되었다.

  • PDF

Altered expression of parvalbumin immunoreactivity in rat main olfactory bulb following pilocarpine-induced status epilepticus

  • Yu, Yeon Hee;Park, Dae-Kyoon;Yoo, Dae Young;Kim, Duk-Soo
    • BMB Reports
    • /
    • v.53 no.4
    • /
    • pp.234-239
    • /
    • 2020
  • Epilepsy is a chronic neurological disease characterized by spontaneous recurrent seizures and caused by various factors and mechanisms. Malfunction of the olfactory bulb is frequently observed in patients with epilepsy. However, the morphological changes in the olfactory bulb during epilepsy-induced neuropathology have not been elucidated. Therefore, in the present study, we investigated the expression of parvalbumin (PV), one of the calcium-binding proteins, and morphological changes in the rat main olfactory bulb (MOB) following pilo-carpine-induced status epilepticus (SE). Pilocarpine-induced SE resulted in neuronal degeneration in the external plexiform layer (EPL) and glomerular layer (GL) of the MOB. PV immunoreactivity was observed in the neuronal somas and processes in the EPL and GL of the control group. However, six hours after pilocarpine administration, PV expression was remarkably decreased in the neuronal processes compared to the somas and the average number of PV-positive interneurons was significantly decreased. Three months after pilocarpine treatment, the number of PV-positive interneurons was also significantly decreased compared to the 6 hour group in both layers. In addition, the number of NeuN-positive neurons was also significantly decreased in the EPL and GL following pilocarpine treatment. In double immunofluorescence staining for PV and MAP2, the immunoreactivity for MAP2 around the PV-positive neurons was significantly decreased three months after pilocarpine treatment. Therefore, the present findings suggest that decreases in PV-positive GABAergic interneurons and dendritic density in the MOB induced impaired calcium buffering and reciprocal synaptic transmission. Thus, these alterations may be considered key factors aggravating olfactory function in patients with epilepsy.

Glial Mechanisms of Neuropathic Pain and Emerging Interventions

  • Jo, Daehyun;Chapman, C. Richard;Light, Alan R.
    • The Korean Journal of Pain
    • /
    • v.22 no.1
    • /
    • pp.1-15
    • /
    • 2009
  • Neuropathic pain is often refractory to intervention because of the complex etiology and an incomplete understanding of the mechanisms behind this type of pain. Glial cells, specifically microglia and astrocytes, are powerful modulators of pain and new targets of drug development for neuropathic pain. Glial activation could be the driving force behind chronic pain, maintaining the noxious signal transmission even after the original injury has healed. Glia express chemokine, purinergic, toll-like, glutaminergic and other receptors that enable them to respond to neural signals, and they can modulate neuronal synaptic function and neuronal excitability. Nerve injury upregulates multiple receptors in spinal microglia and astrocytes. Microglia influence neuronal communication by producing inflammatory products at the synapse, as do astrocytes because they completely encapsulate synapses and are in close contact with neuronal somas through gap junctions. Glia are the main source of inflammatory mediators in the central nervous system. New therapeutic strategies for neuropathic pain are emerging such as targeting the glial cells, novel pharmacologic approaches and gene therapy. Drugs targeting microglia and astrocytes, cytokine production, and neural structures including dorsal root ganglion are now under study, as is gene therapy. Isoform-specific inhibition will minimize the side effects produced by blocking all glia with a general inhibitor. Enhancing the anti-inflammatory cytokines could prove more beneficial than administering proinflammatory cytokine antagonists that block glial activation systemically. Research on therapeutic gene transfer to the central nervous system is underway, although obstacles prevent immediate clinical application.

Estimation of Load Characteristic Factor Considering The Load Pattern and Seasonal Characteristic for Consumer (수용가의 형태와 계절별 특성을 고려한 부하특성계수 재 산정)

  • Hwang, H.M.;Jang, S.I.;Kim, K.H.;Kim, J.E.;Rho, D.S.;Jeong, I.J.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.450-453
    • /
    • 2003
  • This paper presents the estimation on Load Characteristic Factor(k) which is considered to load pattern and seasonal characteristic of consumer. We can calculate the loss of distribution networks through the equation composing of Load Factor(LF), Loss Load Factor(LLF) and load characteristic factor(k). This equation is similar to the method of Regulator-General Victoria, Australia. Generally, the conventional method for calculating the distribution losses uses k with a constant value from 0.1 to 0.3. However, the k which is a relationship between LF and LLF can be varied by load pattern and seasonal characteristics. It is necessary to estimate the k according to load characteristics. This paper shows the result for recalculating k using the KEPCO's SOMAS data measured in distribution networks.

  • PDF

Prediction of Electric Power on Distribution Line Using Machine Learning and Actual Data Considering Distribution Plan (배전계획을 고려한 실데이터 및 기계학습 기반의 배전선로 부하예측 기법에 대한 연구)

  • Kim, Junhyuk;Lee, Byung-Sung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.171-177
    • /
    • 2021
  • In terms of distribution planning, accurate electric load prediction is one of the most important factors. The future load prediction has manually been performed by calculating the maximum electric load considering loads transfer/switching and multiplying it with the load increase rate. In here, the risk of human error is inherent and thus an automated maximum electric load forecasting system is required. Although there are many existing methods and techniques to predict future electric loads, such as regression analysis, many of them have limitations in reflecting the nonlinear characteristics of the electric load and the complexity due to Photovoltaics (PVs), Electric Vehicles (EVs), and etc. This study, therefore, proposes a method of predicting future electric loads on distribution lines by using Machine Learning (ML) method that can reflect the characteristics of these nonlinearities. In addition, predictive models were developed based on actual data collected at KEPCO's existing distribution lines and the adequacy of developed models was verified as well. Also, as the distribution planning has a direct bearing on the investment, and amount of investment has a direct bearing on the maximum electric load, various baseline such as maximum, lowest, median value that can assesses the adequacy and accuracy of proposed ML based electric load prediction methods were suggested.

Distribution of Parvalbumin-Immunoreactive Retinal Ganglion Cells in the Greater Horseshoe Bat, Rhinolophus ferrumequinum (한국관박쥐 망막에서 파브알부민 면역반응성 망막신경절세포의 분포 양상)

  • Jeon, Young-Ki;Kim, Tae-Jin;Lee, Eun-Shil;Joo, Young-Rak;Jeon, Chang-Jin
    • Journal of Life Science
    • /
    • v.17 no.8 s.88
    • /
    • pp.1068-1074
    • /
    • 2007
  • Parvalbumin occurs in various types of cells in the retina. We previously reported parvalbumin distribution in the inner nuclear layer of bat retina. In the present study, we identified the parvalbumin-immunoreactive neurons in the ganglion cell layer of the retina of a bat, Rhinolophus ferrumequinum, and investigated the distribution pattern of the labeled neurons. Parvalbumin immunoreactivity was found in numerous cell bodies in the ganglion cell layer. Quantitative analysis showed that these cells had medium to large-sized somas. The soma diameter of the parvalbumin-immunoreactive cells in the ganglion cell layer ranged from 12.35 to 19.12 ${\mu}m$ (n=166). As the fibers in the nerve fiber layer were also stained, the majority of parvalbumin-immunoreactive cells in the ganglion cell layer should be medium to large-sized retinal ganglion cells. The mean nearest neighbor distance of the parvalbumin-immunoreactive cells in the ganglion cell layer of the bat retina ranged from 59.57 to 62.45 ${\mu}m$ and the average regularity index was 2.95 ${\pm}$ 0.3 (n=4). The present results demonstrate that parvalbu-min is expressed in medium to large-sized retinal ganglion cells in bat retina, and they have a well-or-ganized distributional pattern with regular mosaics. These results should be important as they are applicable to a better understanding of the unsolved issue of a bat vision. This data will help to provide fundamental knowledge for the better understanding of the unique behavioral aspects of bat flight maneuverability.

Morphology and Synaptic Connectivity of Cholinergic Amacrine Cells in the Mouse Retina (생쥐 망막에서 콜린성 무축삭세포의 분포 양상 및 연접회로에 대한 연구)

  • Kang, Wha-Sun;Chun, Myung-Hoon
    • Applied Microscopy
    • /
    • v.34 no.4
    • /
    • pp.285-294
    • /
    • 2004
  • We investigated the morphology, distribution and synaptic connectivity of cholinergic neurons in the mouse retina by immunocytochemistry, using antisera against choline acetyltransferase (ChAT). ChAT-immunoreactive amacrine cells fall into two groups according to the localization of their somas in the retina: one is situated in the inner nuclear layer (INL), near the border of the inner plexiform layer (IPL), and the other is displaced in the ganglion cell layer (GCL). The dendrites of amacrine cells from the INL ramify in sublamina a and that of the displaced amacrine cells ramify in sublamina b of the IPL. Double labeling with an antisera against ChAT and r-aminobutyric acid (GABA) demonstrated that these labeled cells formed a subpopulation of GABAergic amacrine cells. The synaptic connectivity of ChAT-immunoreactive amacrine cells was identified in the IPL by electron microscopy. The most frequent synaptic input of ChAT-labeled amacrine cells was from bipolar cells in both sublaminae a and b of the IPL, followed by labeled amacrine cells and unlabeled amacrine cells. Their primary output targets were onto ganglion cells in both sublaminae a and b and output onto ganglion cells was more frequently observed in sublamina b of the IPL. Our results suggest that cholinergic amacrine cells in the mouse retina are very similar to their counter parts in other mammals, and they can attribute a major role in the pathway feeding into directionally selective ganglion cells.