• Title/Summary/Keyword: SOM (Self-Organizing Map)

Search Result 235, Processing Time 0.045 seconds

Identification of Bird Community Characteristics by Habitat Environment of Jeongmaek Using Self-organizing Map - Case Stuty Area Geumnamhonam and Honam, Hannamgeumbuk and Geumbuk, Naknam Jeongmaek, South Korea - (자기조직화지도를 활용한 정맥의 서식지 환경에 따른 조류 군집 특성 파악 - 금남호남 및 호남정맥, 한남금북 및 금북정맥, 낙남정맥을 대상으로 -)

  • Hwang, Jong-Kyeong;Kang, Te-han;Han, Seung-Woo;Cho, Hae-Jin;Nam, Hyung-Kyu;Kim, Su-Jin;Lee, Joon-Woo
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.4
    • /
    • pp.377-386
    • /
    • 2021
  • This study was conducted to provide basic data for habitat management and preservation of Jeongmaek. A total of 18 priority research areas were selected with consideration to terrain and habitat environment, and 54 fixed plots were selected for three types of habits: development, valley, and forest road and ridge. The survey was conducted in each season (May, August, and October), excluding the winter season, from 2016 to 2018. The distribution analysis of birds observed in each habitat type using a self-organizing map (SOM) classified them into a total of four groups (MRPP, A=0.12, and p <0.005). The comparative analysis of the number of species, the number of individuals, and the species diversity index for each SOM group showed that they were all the highest in group III (Kruskal-Wallis, the number species: x2 = 13.436, P <0.005; the number of individuals: x2 = 8.229, P <0.05; the species diversity index: x2 = 17.115, P <0.005). Moreover, the analysis by applying the land cover map to the random forest model to examine the index species of each group and identify the characteristics of the habitat environment showed a difference in the ratio of the habitat environment and the indicator species among the four groups. The index species analysis identified a total of 18 bird species as the indicator species in three groups except for group II. When applying the random forest model and indicator species analysis to the results of classification into four groups using the SOM, the composition of the indicator species by the group showed a correlation with the habitat characteristics of each group. Moreover, the distribution patterns and densities of observed species were clearly distinguished according to the dominant habitat for each group. The results of the analysis that applied the SOM, indicator species, and random forest model together can derive useful results for the characterization of bird habitats according to the habitat environment.

Analysis of Two-Dimensional Fluorescence Spectra in Biotechnological Processes by Artificial Neural Networks II - Process Modeling using Backpropagation Neural Network - (인공신경망에 의만 생물공정에서 2차원 영광스펙트럼의 분석 II - 역전파 신경망에 의한 공정의 모델링 -)

  • Lee Kum-Il;Yim Yong-Sik;Sohn Ok-Jae;Chung Sang-Wook;Rhee Jong Il
    • KSBB Journal
    • /
    • v.20 no.4
    • /
    • pp.299-304
    • /
    • 2005
  • A two-dimensional (2D) spectrofluorometer was used to monitor various fermentation processes with recombinant E. coli for the production of 5-aminolevulinic acid (ALA). The whole fluorescence spectral data obtained during a process were analyed using artificial neural networks, i.e. self-organizing map (SOM) and feedforward backpropagation neural network (BPNN).Based on the classified fluorescence spectra a supervised BPNN algorithm was used to predict some of the process parameters. It was also shown that the BPNN models could elucidate some sections of the process performance, e.g. forecasting the process performance.

An Exploratory Methodology for Longitudinal Data Analysis Using SOM Clustering (자기조직화지도 클러스터링을 이용한 종단자료의 탐색적 분석방법론)

  • Cho, Yeong Bin
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.5
    • /
    • pp.100-106
    • /
    • 2022
  • A longitudinal study refers to a research method based on longitudinal data repeatedly measured on the same object. Most of the longitudinal analysis methods are suitable for prediction or inference, and are often not suitable for use in exploratory study. In this study, an exploratory method to analyze longitudinal data is presented, which is to find the longitudinal trajectory after determining the best number of clusters by clustering longitudinal data using self-organizing map technique. The proposed methodology was applied to the longitudinal data of the Employment Information Service, and a total of 2,610 samples were analyzed. As a result of applying the methodology to the actual data applied, time-series clustering results were obtained for each panel. This indicates that it is more effective to cluster longitudinal data in advance and perform multilevel longitudinal analysis.

Bankruptcy Type Prediction Using A Hybrid Artificial Neural Networks Model (하이브리드 인공신경망 모형을 이용한 부도 유형 예측)

  • Jo, Nam-ok;Kim, Hyun-jung;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.79-99
    • /
    • 2015
  • The prediction of bankruptcy has been extensively studied in the accounting and finance field. It can have an important impact on lending decisions and the profitability of financial institutions in terms of risk management. Many researchers have focused on constructing a more robust bankruptcy prediction model. Early studies primarily used statistical techniques such as multiple discriminant analysis (MDA) and logit analysis for bankruptcy prediction. However, many studies have demonstrated that artificial intelligence (AI) approaches, such as artificial neural networks (ANN), decision trees, case-based reasoning (CBR), and support vector machine (SVM), have been outperforming statistical techniques since 1990s for business classification problems because statistical methods have some rigid assumptions in their application. In previous studies on corporate bankruptcy, many researchers have focused on developing a bankruptcy prediction model using financial ratios. However, there are few studies that suggest the specific types of bankruptcy. Previous bankruptcy prediction models have generally been interested in predicting whether or not firms will become bankrupt. Most of the studies on bankruptcy types have focused on reviewing the previous literature or performing a case study. Thus, this study develops a model using data mining techniques for predicting the specific types of bankruptcy as well as the occurrence of bankruptcy in Korean small- and medium-sized construction firms in terms of profitability, stability, and activity index. Thus, firms will be able to prevent it from occurring in advance. We propose a hybrid approach using two artificial neural networks (ANNs) for the prediction of bankruptcy types. The first is a back-propagation neural network (BPN) model using supervised learning for bankruptcy prediction and the second is a self-organizing map (SOM) model using unsupervised learning to classify bankruptcy data into several types. Based on the constructed model, we predict the bankruptcy of companies by applying the BPN model to a validation set that was not utilized in the development of the model. This allows for identifying the specific types of bankruptcy by using bankruptcy data predicted by the BPN model. We calculated the average of selected input variables through statistical test for each cluster to interpret characteristics of the derived clusters in the SOM model. Each cluster represents bankruptcy type classified through data of bankruptcy firms, and input variables indicate financial ratios in interpreting the meaning of each cluster. The experimental result shows that each of five bankruptcy types has different characteristics according to financial ratios. Type 1 (severe bankruptcy) has inferior financial statements except for EBITDA (earnings before interest, taxes, depreciation, and amortization) to sales based on the clustering results. Type 2 (lack of stability) has a low quick ratio, low stockholder's equity to total assets, and high total borrowings to total assets. Type 3 (lack of activity) has a slightly low total asset turnover and fixed asset turnover. Type 4 (lack of profitability) has low retained earnings to total assets and EBITDA to sales which represent the indices of profitability. Type 5 (recoverable bankruptcy) includes firms that have a relatively good financial condition as compared to other bankruptcy types even though they are bankrupt. Based on the findings, researchers and practitioners engaged in the credit evaluation field can obtain more useful information about the types of corporate bankruptcy. In this paper, we utilized the financial ratios of firms to classify bankruptcy types. It is important to select the input variables that correctly predict bankruptcy and meaningfully classify the type of bankruptcy. In a further study, we will include non-financial factors such as size, industry, and age of the firms. Thus, we can obtain realistic clustering results for bankruptcy types by combining qualitative factors and reflecting the domain knowledge of experts.

Clustering Analysis by Customer Feature based on SOM for Predicting Purchase Pattern in Recommendation System (추천시스템에서 구매 패턴 예측을 위한 SOM기반 고객 특성에 의한 군집 분석)

  • Cho, Young Sung;Moon, Song Chul;Ryu, Keun Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.2
    • /
    • pp.193-200
    • /
    • 2014
  • Due to the advent of ubiquitous computing environment, it is becoming a part of our common life style. And tremendous information is cumulated rapidly. In these trends, it is becoming a very important technology to find out exact information in a large data to present users. Collaborative filtering is the method based on other users' preferences, can not only reflect exact attributes of user but also still has the problem of sparsity and scalability, though it has been practically used to improve these defects. In this paper, we propose clustering method by user's features based on SOM for predicting purchase pattern in u-Commerce. it is necessary for us to make the cluster with similarity by user's features to be able to reflect attributes of the customer information in order to find the items with same propensity in the cluster rapidly. The proposed makes the task of clustering to apply the variable of featured vector for the user's information and RFM factors based on purchase history data. To verify improved performance of proposing system, we make experiments with dataset collected in a cosmetic internet shopping mall.

A Framework for Developing interoperable Knowledge Discovery System

  • Li, Sheng-Tun;Shue, Li-Yen
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.435-440
    • /
    • 2001
  • The development of web-aware knowledge discovery system has received a great deal of attention in recent years. It plays a key-enabling role for competitive businesses in the E-commerce era. One of the challenges in developing web-aware knowledge discovery systems is to integrate and coordinate and coordinate existing standalone or legacy knowledge discovery applications in a seamless manner, so that cost-effective systems can be developed without the need of costly proprietary products. In this paper, we present an approach for developing a framework of web-aware interoperable knowledge discovery system to achieve this purpose. This approach applies RMI and high-level code wrapper of Java distributed object computing to address the issues of interoperability in heterogeneous environments, which includes programming language, platform, and visual object model. The effectiveness of the proposed framework is demonstrated through the integration and extension of the two well-known standalone knowledge discovery tools, SOM_PAK and Nenet. It confirms that a variety of interoperable knowledge discovery systems can be constructed efficiently on the basis of the framework to meet various requirements of knowledge discovery tasks.

  • PDF

Categorization of End-Users' Load Patterns Applied to Dynamically-Administered Critical Peak Pricing (Smart Meter와 부하 패턴 분류를 이용한 Critical Peak Pricing 요금제 적용)

  • Joo, Jhi-Young;Kwon, Sang-Hyeok;Ah, Sang-Ho;Yoon, Yong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.460-462
    • /
    • 2008
  • 일반 수용가를 대상으로 한 효율적인 수요관리의 한 방법으로써 Dynamically-Administered Critical Peak Pricing[1] 요금제를 이용하여 일반 수용가 대상 수요관리를 스마트 미터기인 Smart Cabinet Panel(SCP)를 개발하여 적용하였다. 이 DA-CPP 요금제에는 핵심이 되는 최적 critical peak 시점을 푸는 하위 문제들 및 방법론들이 존재하는데, 우리는 energy service provider(ESP)가 관리해야 할 수용가의 수가 매우 많다는 점에 주목하여, 각 수용가의 1일 부하 사용량 패턴을 몇 개의 그룹으로 나누어 각 그룹에 대해 critical peak 최적 시점을 결정하는 연구를 수행하였다. 이러한 수용가 부하량 패턴그룹화를 위해 인공 지능의 여러 기법 중 하나인 self-organizing map(SOM)을 사용하였다 그리고 ESP와 수음가가 통신할 수 있도록 개발된 SCP를 통해 Critical Peak을 적용하였다.

  • PDF

Design Exploration of High-Lift Airfoil Using Kriging Model and Data Mining Technique

  • Kanazaki, Masahiro;Yamamoto, Kazuomi;Tanaka, Kentaro;Jeong, Shin-Kyu
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.28-36
    • /
    • 2007
  • A multi-objective design exploration for a three-element airfoil consisted of a slat, a main wing, and a flap was carried out. The lift curve improvement is important to design high-lift system, thus design has to be performed with considered multi-angle. The objective functions considered here are to maximize the lift coefficient at landing and near stall conditions simultaneously. Kriging surrogate model which was constructed based on several sample designs is introduced. The solution space was explored based on the maximization of Expected Improvement (EI) value corresponding to objective functions on the Krigingmodels. The improvement of the model and the exploration of the optimum can be advanced at the same time by maximizing EI value. In this study, a total of 90 sample points are evaluated using the Reynolds averaged Navier-Stokes simulation(RANS) for the construction of the Kriging model. In order to obtain the information of the design space, two data mining techniques are applied to design result. One is functional Analysis of Variance(ANOVA) which can show quantitative information and the other is Self-Organizing Map(SOM) which can show qualitative information.

HMM-Based Human Gait Recognition (HMM을 이용한 보행자 인식)

  • Sin Bong-Kee;Suk Heung-Il
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.5
    • /
    • pp.499-507
    • /
    • 2006
  • Recently human gait has been considered as a useful biometric supporting high performance human identification systems. This paper proposes a view-based pedestrian identification method using the dynamic silhouettes of a human body modeled with the Hidden Markov Model(HMM). Two types of gait models have been developed both with an endless cycle architecture: one is a discrete HMM method using a self-organizing map-based VQ codebook and the other is a continuous HMM method using feature vectors transformed into a PCA space. Experimental results showed a consistent performance trend over a range of model parameters and the recognition rate up to 88.1%. Compared with other methods, the proposed models and techniques are believed to have a sufficient potential for a successful application to gait recognition.

A Hybrid Neural Network Framework for Hour-Ahead System Marginal Price Forecasting (하이브리드 신경회로망을 이용한 한시간전 계통한계가격 예측)

  • Jeong, Sang-Yun;Lee, Jeong-Kyu;Park, Jong-Bae;Shin, Joong-Rin;Kim, Sung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.162-164
    • /
    • 2005
  • This paper presents an hour-ahead System Marginal Price (SMP) forecasting framework based on a neural network. Recently, the deregulation in power industries has impacted on the power system operational problems. The bidding strategy of market participants in energy market is highly dependent on the short-term price levels. Therefore, short-term SMP forecasting is a very important issue to market participants to maximize their profits. and to market operator who may wish to operate the electricity market in a stable sense. The proposed hybrid neural network is composed of tow parts. First part of this scheme is pattern classification to input data using Kohonen Self-Organizing Map (SOM) and the second part is SMP forecasting using back-propagation neural network that has three layers. This paper compares the forecasting results using classified input data and unclassified input data. The proposed technique is trained, validated and tested with historical date of Korea Power Exchange (KPX) in 2002.

  • PDF