• 제목/요약/키워드: SOM (Self-Organizing Map)

검색결과 235건 처리시간 0.03초

SOM에서 개체의 시각화 (Enhancing Visualization in Self-Organizing Maps)

  • 엄익현;허명회
    • 응용통계연구
    • /
    • 제18권1호
    • /
    • pp.83-98
    • /
    • 2005
  • 다변량 자료를 분석하는 데 있어서 관측 개체들의 분포적 양태를 파악하는 것은 자료 특성의 이해에 도움이 될 뿐만 아니라 이후 모형화 과정에도 큰 도움을 준다. 이를 위하여 다변량자료의 저차원 시각화에 대한 많은 연구가 진행되어 왔다. 그 중 하나가 코호넨(T. Kohonen)의 자기조직화지도(Self-Organizing Map; SOM)이다. SOM은 저차원 그리드 공간에 고차원 다변량 자료를 축약하여 시각적으로 나타내는 비지도 학습법의 일종으로 최근 들어 통계 분석자들이 많은 관심을 가지고 있는 분야이다. 그러나 SOM은 개체공간의 연속형으로 표현되는 개체를 저차원 그리드 공간에 승자노드에 의해 비연속적으로 표현한다는 단점을 지니고 있다. 본 논문에서는 SOM을 통계적 목적으로 사용하기 위해 요구되는 그리드 공간에 개체를 연속적으로 표현하는 방법들을 제안하고 환용 예를 제시 하고자 한다.

퍼셉트론 형태의 SOM : SOM의 일반화 (Perceptron-like SOM : Generalization of SOM)

  • 송근배;이행세
    • 한국정보처리학회논문지
    • /
    • 제7권10호
    • /
    • pp.3098-3104
    • /
    • 2000
  • 본 논문에서는 퍼셉트론 형태의 SOM(PSOM)을 정의한다. 그리고 이 PSOM의 출력뉴런의 목표 값을 적당히 설정할 경우 PSOM은 Kohonen's SOM이 됨을 보인다. 이는 PSOM가 SOM의 일반화된 알고리즘임을 시사한다. 또한 클러스터링 문제를 단위 초구면상(Hyperphere)에 분포한 벡터들로 한정할 경우 SOM은 Dot-product SOM(DSOM)과 동등한 알고리즘임을 보인다. 즉, DSOM은 SOM의 특수한 형태이며, 결론적으로, PSOM은 DSOM도 포함하는 알고리즘이다. 본 논문에서는 이를 증명하고 결론을 맺는다.

  • PDF

자기조직화 지도를 위한 베이지안 학습 (Bayesian Learning for Self Organizing Maps)

  • 전성해;전홍석;황진수
    • 응용통계연구
    • /
    • 제15권2호
    • /
    • pp.251-267
    • /
    • 2002
  • Kohonen이 제안한 자기조직화 지도(Self Organizing Maps : SOM)는 매우 빠른 신경망 모형이다. 하지만 다른 신경망 모형과 마찬가지로 학습 결과에 대한 명확한 규칙을 제시하지 못할 뿐만 아니라 지역적 최적값으로 빠지는 경우가 종종 있다. 본 논문에서는 이러한 자기조직화 지도의 모형에 대한 설명력을 부여하고 전역 최적값으로 수렴할 수 있는 예측 성능을 갖는 모형으로서 자율학습 신경망에 베이지안 추론을 결합한 자기조직화 지도를 위한 베이지안 학습(Bayesian Learning for Self Organizing Maps ; BLSOM)을 제안한다. 이 방법은 기존의 자기조직화 지도가 지역적 해에 머물러 있는 것에 비해서 언제든지 전역적 해로 수렴함이 실험을 통하여 밝혀졌다.

동아시아 여름몬순 지수의 자기조직화지도(SOM)에 의한 강수량의 계절 내 진동 분류 (Classification of Intraseasonal Oscillation in Precipitation using Self-Organizing Map for the East Asian Summer Monsoon)

  • 추정은;하경자
    • 대기
    • /
    • 제21권3호
    • /
    • pp.221-228
    • /
    • 2011
  • The nonlinear characteristics of summer monsoon intraseasonal oscillation (ISO) in precipitation, which is manifested as fluctuations in convection and circulation, is one of the major difficulty on the prediction of East Asian summer monsoon (EASM). The present study aims to identify the spatial distribution and time evolution of nonlinear phases of monsoon ISO. In order to classify the different phases of monsoon ISO, Self-Organizing Map(SOM) known as a nonlinear pattern recognition technique is used. SOM has a great attractiveness detecting self-similarity among data elements by grouping and clustering such self-similar components. The four important patterns are demonstrated as Meiyu-Baiu, Changma, post-Changma, and dry-spell modes. It is found that SOM well captured the formation of East Asian monsoon trough during early summer and its northward migration together with enhanced convection over subtropical western Pacific and regionally intensive precipitation including Meiyu, Changma and Baiu. The classification of fundamental large scale spatial pattern and evolutionary history of nonlinear phases of monsoon ISO provides the source of predictability for extended-range forecast of summer precipitation.

Self Organizing Map(SOM) 알고리즘을 이용한 상표의 내용기반 이미지검색 성능평가에 관한 연구 (An Evaluative Study on the Content-based Trademark Image Retrieval System Based on Self Organizing Map(SOM) Algorithm)

  • 백우진;이재준;신민기;안의건;함은미;신문선
    • 정보관리학회지
    • /
    • 제24권3호
    • /
    • pp.321-341
    • /
    • 2007
  • 산업재산권중 하나인 상표에 대한 효율적인 이미지 검색은 상표도용 및 이로 인한 분쟁을 방지할 수 있다. 이를 위해서 효율적인 내용기반 유사이미지 검색이 하나의 방안이 될 수 있다. 본 논문은 상표이미지로부터 회색조 히스토그램(gray histogram) 분석을 통하여 가시적인 자질을 추출하여 Self Organizing Map(SOM) 알고리즘을 적용한 내용기반 유사이미지 검색시스템을 이용하는 방법을 제안하였다. 또한 내용기반 유사이미지 검색시스템의 정량적인 성능평가 방안을 제시하여 본 연구에서 개발한 이미지 검색 시스템의 객관적인 성능평가를 수행하였다.

자가 조직화 지도의 커널 공간 해석에 관한 연구 (A New Self-Organizing Map based on Kernel Concepts)

  • 정성문;김기범;홍순좌
    • 정보처리학회논문지B
    • /
    • 제13B권4호
    • /
    • pp.439-448
    • /
    • 2006
  • Kohonen SOM(Self-Organizing Map)이나 MLP(Multi-Layer Perceptron), SVM(Support Vector Machine)과 같은 기존의 인식 및 클러스터링 알고리즘들은 새로운 입력 패턴에 대한 적응성이 떨어지고 학습 패턴 자체의 복잡도에 대한 학습률의 의존도가 크게 나타나는 등 여러 가지 단점이 있다. 이러한 학습 알고리즘의 단점은 문제의 학습 패턴자체의 특성을 잃지 않고 문제의 복잡도를 낮출 수 있다면 보완할 수 있다. 패턴 자체의 특성을 유지하며 복잡도를 낮추는 방법론은 여러 가지가 있으며, 본 논문에서는 커널 공간 해석 기법을 접근 방법으로 한다. 본 논문에서 제안하는 kSOM(kernel based SOM)은 원 공간의 데이터가 갖는 복잡도를 무한대에 가까운 초 고차원의 공간으로 대응시킴으로써 데이터의 분포가 원 공간의 분포에 비해 상대적으로 성긴(spase) 구조적 특정을 지니게 하여 클러스터링 및 인식률의 상승을 보장하는 메커니즘 을 제안한다. 클러스터링 및 인식률의 산출은 본 논문에서 제안한 새로운 유사성 탐색 및 갱신 기법에 근거하여 수행한다. CEDAR DB를 이용한 필기체 문자 클러스터링 및 인식 실험을 통해 기존의 SOM과 본 논문에서 제안한 kSOM과 성능을 비교한다.

최적의 워터마크 강도와 길이를 이용한 디지털 워터마킹 (Digital Watermarking using the suitable watermark strength and length)

  • 이영희;이정희;차의영
    • 컴퓨터교육학회논문지
    • /
    • 제9권5호
    • /
    • pp.77-84
    • /
    • 2006
  • 본 논문에서는 HVS(Human Visual System)와 신경회로망 중 SOM(Self-Organizing Map)을 이용하여 DWT 영역에서 영상에 적응적인 워터마킹 알고리즘을 제안한다. HVS는 brightness sensitivity와 texture sensitivity의 두가지 특성으로 설명될 수 있다. SOM은 영상의 지역적인 특징들을 얻는데 사용된다. 따라서 HVS와 SOM을 이용하여 삽입되는 워터마크의 최적의 강도와 길이를 결정한다. 실험을 통해 제안한 방법이 최적의 워터마크 강도와 길이를 제공하며 비가시성 테스트에서 우수함과 다양한 공격에 강인함을 알 수 있다.

  • PDF

High-Speed Self-Organzing Map for Document Clustering

  • Rojanavasu, Ponthap;Pinngern, Ouen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1056-1059
    • /
    • 2003
  • Self-Oranizing Map(SOM) is an unsupervised neural network providing cluster analysis of high dimensional input data. The output from the SOM is represented in map that help us to explore data. The weak point of conventional SOM is when the map is large, it take a long time to train the data. The computing time is known to be O(MN) for trainning to find the winning node (M,N are the number of nodes in width and height of the map). This paper presents a new method to reduce the computing time by creating new map. Each node in a new map is the centroid of nodes' group that are in the original map. After create a new map, we find the winning node of this map, then find the winning node in original map only in nodes that are represented by the winning node from the new map. This new method is called "High Speed Self-Oranizing Map"(HS-SOM). Our experiment use HS-SOM to cluster documents and compare with SOM. The results from the experiment shows that HS-SOM can reduce computing time by 30%-50% over conventional SOM.

  • PDF

나주지점의 강우-유출 해석을 위한 최적의 SOM 구조 결정 (Determination of the Optimized Structure of Self-Organizing Map for the Rainfall-Runoff Analysis in Naju)

  • 김용구;진영훈;박성천;정천리
    • 한국수자원학회논문집
    • /
    • 제41권10호
    • /
    • pp.995-1007
    • /
    • 2008
  • 인공신경망 이론을 이용하여 강한 비선형성의 경향을 보이고 있는 강우-유출간의 관계를 모형화하기 위한 연구들은 예측뿐만이 아니라 대상자료들의 양상을 분류하여 그 특성을 분석하는 데에도 이용되고 있다. 이와 같은 패턴분류를 위한 SOM(Self-Organizing Map: SOM)의 연구 결과를 검토해보면 SOM 훈련을 위한 지도크기 및 배열의 결정은 SOM 성능에 큰 영향을 미치는 것으로 보고되고 있으나 지도크기 결정시 지도의 종방향 크기와 횡방향 크기를 결정할 수 있는 확정론적인 방법이나 이론식이 없고, 지도배열은 주로 육각형 배열(hexagonal array)을 이용하여 적용하고 있다. 따라서 본 연구에서는 영산강 나주지점을 대상으로 강우-유출관계의 분할특성을 나타내는 지도크기와 배열을 복합적으로 검토하여 나주지점의 강우-유출 해석을 위한 적절한 지도구조를 결정하였다. 그 결과 8개의 패턴으로 구분된 지도크기 20$\times$16의 육각형배열 구조가 나주지점의 강우-유출해석을 위한 적절한 지도구조로 결정되었다.

Improvement of Self Organizing Maps using Gap Statistic and Probability Distribution

  • Jun, Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권2호
    • /
    • pp.116-120
    • /
    • 2008
  • Clustering is a method for unsupervised learning. General clustering tools have been depended on statistical methods and machine learning algorithms. One of the popular clustering algorithms based on machine learning is the self organizing map(SOM). SOM is a neural networks model for clustering. SOM and extended SOM have been used in diverse classification and clustering fields such as data mining. But, SOM has had a problem determining optimal number of clusters. In this paper, we propose an improvement of SOM using gap statistic and probability distribution. The gap statistic was introduced to estimate the number of clusters in a dataset. We use gap statistic for settling the problem of SOM. Also, in our research, weights of feature nodes are updated by probability distribution. After complete updating according to prior and posterior distributions, the weights of SOM have probability distributions for optima clustering. To verify improved performance of our work, we make experiments compared with other learning algorithms using simulation data sets.