• Title/Summary/Keyword: SOIL FEATURE

Search Result 126, Processing Time 0.027 seconds

Probabilistic Approach on Railway Infrastructure Stability and Settlement Analysis

  • Lee, Sangho
    • International Journal of Railway
    • /
    • v.6 no.2
    • /
    • pp.45-52
    • /
    • 2013
  • Railway construction needs vast soil investigation for its infrastructure foundation designs along the planned railway path to identify the design parameters for stability and serviceability checks. The soil investigation data are usually classified and grouped to decide design input parameters per each construction section and budget estimates. Deterministic design method which most civil engineer and practitioner are familiar with has a clear limitation in construction/maintenance budget control, and occasionally produced overdesigned or unsafe design problems. Instead of using a batch type analysis with predetermined input parameters, data population collected from site soil investigation and design load condition can be statistically estimated for the mean and variance to present the feature of data distribution and optimized with a best fitting probability function. Probabilistic approach using entire feature of design input data enables to predict the worst, best and most probable cases based on identified ranges of soil and load data, which will help railway designer select construction method to save the time and cost. This paper introduces two Monte Carlo simulations actually applied on estimation of retaining wall external stability and long term settlement of organic soil in soil investigation area for a recent high speed railway project.

An Analysis of Riparian Vegetation Distribution Based on Physical Soil Characteristics and Soil Moisture Content -Focused on the Relationship between Soil Characteristics and Vegetation- (토양의 물리적 특성 및 수분조건에 다른 하반식물의 분포 -토양환경과 식생과의 관계를 중심으로-)

  • 안홍규
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.28 no.5
    • /
    • pp.39-47
    • /
    • 2000
  • This study is to investigate the conditions closely related to the establishment of vegetation in the riparian zone: the soil condition, an important factor along with climate and light. Especially, the soil structure of the microtopographical formations in the specific area known as the riparian microtopographical zone investigated. In addition, the effect of the riparian microtopographical features on the ground water level, soil moisture content, and vegetation was studied. The results of this study are as follows; 1) At all sample sites, below the sand layer, a gravel layer is always present. This is the result of past floods. 2) Although Salix koreensis experiences frequent disturbances such as increase in river level and floods, this vegetation establishes itself in the most secure are in the microtopographical zone. 3) The growth of Phragmites japonica is closely related to the underground water level. 4) It is clear that Miscanthus sacchariflorus grows concentrated in dry areas. 5) The soil accumulation conditions differ according to the soil moisture content of each microtopgraphical feature. Accordingly, the moisture content of the soil is clearly different within the microtopographical zone. The continuous and long-term investigation and research on the relation of riparian reproduction and the relevance with location surrounding factors are necessary in the future.

  • PDF

Targetless displacement measurement of RSW based on monocular vision and feature matching

  • Yong-Soo Ha;Minh-Vuong Pham;Jeongki Lee;Dae-Ho Yun;Yun-Tae Kim
    • Smart Structures and Systems
    • /
    • v.32 no.4
    • /
    • pp.207-218
    • /
    • 2023
  • Real-time monitoring of the behavior of reinforced soil retaining wall (RSW) is required for safety checks. In this study, a targetless displacement measurement technology (TDMT) consisting of an image registration module and a displacement calculation module was proposed to monitor the behavior of RSW, in which facing displacement and settlement typically occur. Laboratory and field experiments were conducted to compare the measuring performance of natural target (NT) with the performance of artificial target (AT). Feature count- and location-based performance metrics and displacement calculation performance were analyzed to determine their correlations. The results of laboratory and field experiments showed that the feature location-based performance metric was more relevant to the displacement calculation performance than the feature count-based performance metric. The mean relative errors of the TDMT were less than 1.69 % and 5.50 % for the laboratory and field experiments, respectively. The proposed TDMT can accurately monitor the behavior of RSW for real-time safety checks.

Development and Evaluation of SWAT Topographic Feature Extraction Error(STOPFEE) Fix Module from Low Resolution DEM (저해상도 DEM 사용으로 인한 SWAT 지형 인자 추출 오류 개선 모듈 개발 및 평가)

  • Kim, Jong-gun;Park, Youn-shik;Kim, Nam-won;Chung, Il-moon;Jang, Won-seok;Park, Jun-ho;Moon, Jong-pil;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.4
    • /
    • pp.488-498
    • /
    • 2008
  • Soil and Water Assessment Tool (SWAT) model have been widely used in simulating hydrology and water quality analysis at watershed scale. The SWAT model extracts topographic feature using the Digital Elevation Model (DEM) for hydrology and pollutant generation and transportation within watershed. Use of various DEM cell size in the SWAT leads to different results in extracting topographic feature for each subwatershed. So, it is recommended that model users use very detailed spatial resolution DEM for accurate hydrology analysis and water quality simulation. However, use of high resolution DEM is sometimes difficult to obtain and not efficient because of computer processing capacity and model execution time. Thus, the SWAT Topographic Feature Extraction Error (STOPFEE) Fix module, which can extract topographic feature of high resolution DEM from low resolution and updates SWAT topographic feature automatically, was developed and evaluated in this study. The analysis of average slope vs. DEM cell size revealed that average slope of watershed increases with decrease in DEM cell size, finer resolution of DEM. This falsification of topographic feature with low resolution DEM affects soil erosion and sediment behaviors in the watershed. The annual average sediment for Soyanggang-dam watershed with DEM cell size of 20 m was compared with DEM cell size of 100 m. There was 83.8% difference in simulated sediment without STOPFEE module and 4.4% difference with STOPFEE module applied although the same model input data were used in SWAT run. For Imha-dam watershed, there was 43.4% differences without STOPFEE module and 0.3% difference with STOPFEE module. Thus, the STOPFEE topographic database for Soyanggang-dam watershed was applied for Chungju-dam watershed because its topographic features are similar to Soyanggang-dam watershed. Without the STOPFEE module, there was 98.7% difference in simulated sediment for Chungju-dam watershed for DEM cell size of both 20 m and 100 m. However there was 20.7% difference in simulated sediment with STOPFEE topographic database for Soyanggang-dam watershed. The application results of STOPFEE for three watersheds showed that the STOPFEE module developed in this study is an effective tool to extract topographic feature of high resolution DEM from low resolution DEM. With the STOPFEE module, low-capacity computer can be also used for accurate hydrology and sediment modeling for bigger size watershed with the SWAT. It is deemed that the STOPFEE module database needs to be extended for various watersheds in Korea for wide application and accurate SWAT runs with lower resolution DEM.

Study on the Selection Criteria for Transplanting Trees in the Forest Reserve Areas Designated for Future Development (훼손예정지의 지형 및 수목 형태를 고려한 이식목 선정기준에 관한 연구)

  • Lee, Soo-Dong;Choi, Song-Hyun
    • Korean Journal of Environment and Ecology
    • /
    • v.23 no.6
    • /
    • pp.535-544
    • /
    • 2009
  • This study was conducted to establish the selection criteria for the trees to be transplanted in the forest reserves which are expected to be developed in the future. The main task in this endeavor was to access the transplantability of the trees focused on their feature, diameter at breast height (D.B.H.), soil feature, etc. The selection of the trees for transplantation consisted of two stages. The first stage was to select trees on the basis of their indigenousness and forest successional stage. The second was to select trees on the basis of their type, D.B.H., the layers of soil, etc. At the first stage, the trees which are not indigenous or expected not to survive were eliminated from the selection list, and the result showed that approximately 5.9% (about 3,841 trees) of the trees proved to be inadequate for transplanting. At the second stage, the investigation of the trees based on the criteria of tree type, D.B.H., the layers of soil was carried out, and the result showed that approximately 33.7% (1,218) out of 3,613 trees turned out to adequate for transplanting however, 23.0% of the trees, which are 829 trees, were found to be impossible to transplant. In addition, it was discovered that in the case of approximately 43.3%(1,566 trees) of the trees there was little difference between transplanting cost and planting cost of new trees. Therefore the investigation indicated that it is more advisable to transplant trees to preserve the ecological environment. However, the study showed that there are other elements to be considered, such as tree feature and soil condition, for the successful tree transplantation, and the necessary information can be provided by the managing personnel who are in charge of the forest.

Spectral Reflectance of Soils Related to the Interaction of Soil Moisture and Soil Color Using Remote Sensing Technology (RS 기법을 이용한 토양수분과 토양 색에 관련된 토양의 분광반사)

  • 박종화
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.5
    • /
    • pp.77-84
    • /
    • 2003
  • Recent advances in remote sensing techniques provide the potential for monitoring soil color as well as soil moisture conditions at the spatial and temporal scales required for detailed local modeling efforts. Soil moisture as well as soil color is a key feature used in the identification and classification of soils. Soil spectral reflectance has a direct relationship with soil color, as well as to other parameters such as soil moisture, soil texture. and organic matter. We evaluate the influence of seven soil properties, soil color and soil moisture, on soil spectral reflectance. This paper presents the results obtained from the ground-truth spectral reflectance measurements in the 300-1100 nm wavelength range for various land surfaces. The results suggest that the reflectance properties of soils are related to soil color, soil texture, and soil moisture. Increasing soil moisture content generally decreases soil reflectance which leads to parallel curves of soil reflectance spectra across the entire shortwave spectrum. We discuss the relationships between the soil reflectance and the Munsell Soil Color Charts which contain standard color chips with colors specified by designations for hue, value, and chroma.

Geotechnical Variability Characterization of Songdo area in Incheon by Field Tests (현장시험을 이용한 인천 송도지반의 변동성 분석)

  • Kim, Dong-Hee;Bae, Kyung-Doo;Lee, Ju-Hyung;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1435-1440
    • /
    • 2009
  • Geotechnical variability is a complex feature that results from many independent sources of uncertainties, and is mainly affected by inherent variability and measurement errors. This study evaluates the coefficient of variation (COV) of soil properties at Song-do region in Korea for evaluating inherent soil variability. Since soil variability is sensitive to soil layers and soil types, the COVs by soil layers (reclaimed layer and marine layer) and the COVs by soil types (clay and silt) were separately evaluated. It is observed that geotechnical variability of marine layer and clay is relatively smaller than that of reclamation layer and silt.

  • PDF

Response analysis of soil deposit considering both frequency and strain amplitude dependencies using nonlinear causal hysteretic damping model

  • Nakamura, Naohiro
    • Earthquakes and Structures
    • /
    • v.4 no.2
    • /
    • pp.181-202
    • /
    • 2013
  • It is well known that the properties of the soil deposits, especially the damping, depend on both frequency and strain amplitude. Therefore it is important to consider both dependencies to calculate the soil response against earthquakes in order to estimate input motions to buildings. However, it has been difficult to calculate the seismic response of the soil considering both dependencies directly. The author has studied the time domain evaluation of the frequency dependent dynamic stiffness, and proposed a simple hysteretic damping model that satisfies the causality condition. In this paper, this model was applied to nonlinear analyses considering the effects of the strain amplitude dependency of the soil. The basic characteristics of the proposed method were studied using a two layered soil model. The response behavior was compared with the conventional model e.g. the Ramberg-Osgood model and the SHAKE model. The characteristics of the proposed model were studied with regard to the effects of element divisions and the frequency dependency that is a key feature of the model. The efficiency of the model was confirmed by these studies.

Spatial Prediction of Soil Carbon Using Terrain Analysis in a Steep Mountainous Area and the Associated Uncertainties (지형분석을 이용한 산지토양 탄소의 분포 예측과 불확실성)

  • Jeong, Gwanyong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.3
    • /
    • pp.67-78
    • /
    • 2016
  • Soil carbon(C) is an essential property for characterizing soil quality. Understanding spatial patterns of soil C is particularly limited for mountain areas. This study aims to predict the spatial pattern of soil C using terrain analysis in a steep mountainous area. Specifically, model performances and prediction uncertainties were investigated based on the number of resampling repetitions. Further, important predictors for soil C were also identified. Finally, the spatial distribution of uncertainty was analyzed. A total of 91 soil samples were collected via conditioned latin hypercube sampling and a digital soil C map was developed using support vector regression which is one of the powerful machine learning methods. Results showed that there were no distinct differences of model performances depending on the number of repetitions except for 10-fold cross validation. For soil C, elevation and surface curvature were selected as important predictors by recursive feature elimination. Soil C showed higher values in higher elevation and concave slopes. The spatial pattern of soil C might possibly reflect lateral movement of water and materials along the surface configuration of the study area. The higher values of uncertainty in higher elevation and concave slopes might be related to geomorphological characteristics of the research area and the sampling design. This study is believed to provide a better understanding of the relationship between geomorphology and soil C in the mountainous ecosystem.

Soil-structure interaction effects on seismic behavior of a hyperbolic cooling tower using three-parameter Vlasov foundation model

  • Karakas, Ali I.;Ozgan, Korhan;Daloglu, Ayse T.
    • Earthquakes and Structures
    • /
    • v.14 no.1
    • /
    • pp.85-94
    • /
    • 2018
  • The paper focuses on the seismic responses of a hyperbolic cooling tower resting on soil foundation represented by the three-parameter Vlasov elastic soil model. The three-parameter soil model eliminates the necessity of field testing to determine soil parameters such as reaction modulus and shear parameter. These parameters are calculated using an iterative procedure depending on the soil surface vertical deformation profile in the model. The soil and tower system are modeled in SAP2000 structural analysis program using a computing tool coded in MATLAB. The tool provides a two-way data transfer between SAP2000 and MATLAB with the help of Open Application Programming Interface (OAPI) feature of SAP2000. The response spectrum analyses of the tower system with circular V-shaped supporting columns and annular raft foundation on elastic soil are conducted thanks to the coded tool. The shell and column forces and displacements are presented for different soil conditions and fixed raft base condition to investigate the effects of soil-structure interaction. Numerical results indicate that the flexibility of soil foundation leads to an increase in displacements but a decrease in shell membrane and column forces. Therefore, it can be stated that the consideration of soil-structure interaction in the seismic response analysis of the cooling tower system provides an economical design process.