• Title/Summary/Keyword: SOIL DEPTH

Search Result 2,469, Processing Time 0.03 seconds

A Study on the Developement of Soil Geochemical Exploration Method for Metal Ore Deposits Affected by Agricultural Activity (농경작업 영향지역의 금속광상에 대한 토양 지구화학 탐사법 개발 연구)

  • Kim, Oak-Bae;Lee, Moo-Sung
    • Economic and Environmental Geology
    • /
    • v.25 no.2
    • /
    • pp.145-151
    • /
    • 1992
  • In order to study the optimum depth for the soil geochemical exploration in the area which is affected by agricultural activities and waste disposal of metal mine, the soil samples were sampled from the B layer of residual soil and vertical 7 layers up to 250 cm in the rice field and 3 layers up to 90 cm in the ordinary field. They were analyzed for Au, As, Cu, Pb and Zn by AAS, AAS-graphite furnace and ICP. To investigate the proper depth for the soil sampling in the contaminated area, the data were treated statistically by applying correlation coefficient, factor analysis and trend analysis. It is conclude that soil geochemical exploration method could be applied in the farm-land and a little contaminated area. The optimum depth of soil sampling is 60 cm in the ordinary field, and 150~200 cm in the rice field. Soil sampling in the area of a huge mine waste disposal is not recommendable. Plotting of geochemical map with factor scores as a input data shows a clear pattern compared with the map of indicater element such as As or Au. The second or third degree trend surface analysis is effective in inferring the continuity of vein in the area where the outcrop is invisible.

  • PDF

Effect of Depth of Tuber Burial, Soil Temperature, and Soil Moisture on Tuber Sprouting of Eleocharis Kuroguwai Ohwi (올방개 괴경(塊莖)의 맹아(萌芽)에 미치는 매몰심(埋沒深), 토양온도(土壤溫度) 및 수분조건(水分條件)의 영향(影響))

  • Chun, J.C.;Shin, H.S.
    • Korean Journal of Weed Science
    • /
    • v.14 no.1
    • /
    • pp.49-55
    • /
    • 1994
  • A study was conducted to determine the effect of depth of burial, soil temperature and/or moisture on tuber sprouting of E, kuroguwai. Tubers were evenly distributed in the upper 30cm of soil. Tuber weight increased as depth of tuber formed increased. No dormancy in newly formed tubers was found, whereas mature tubers were dormant. When new tubers were subjected both to continuous $5^{\circ}C$ and to gradual decreasing temperatures regimes ranged from 20 to $1^{\circ}C$ for 30 days, the tubers remained non-dormant. Viability of tubers was reduced when buried at 5cm depth in dry and moist soil conditions, but no reduction was obtained when buried at 25cm depth, regardless of soil moisture conditions employed. Percent sprouting of tubers buried at 25cm depth increased with increasing duration of burial in three soil moisture conditions studied, wherease in dry and moist conditions percent sprouting of tubers buried at 25cm depth increased by 60-day burial and thereafter decreased. In submerged condition, tuber sprouting was greater when buried at 5cm depth than when buried at 25cm depth, and increased as duration of burial increased at the both depths.

  • PDF

Molecular Size Distribution and Spectroscopic Characterization of Humic and Fulvic Acids Extracted from Soils in Different Depth (깊이별 토양 부식산의 분자량분포 및 분광학적 특성 규명)

  • Shin, Hyun-Sang;Rhee, Dong-Sock;Chung, Kun-Ho;Lee, Chang-Woo
    • Analytical Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.373-380
    • /
    • 2002
  • Humic and fulvic acids present in soil of different depth were extracted and their characteristics were analyzed as a basic study to evaluate the effect of humic substances on the behaviour of radioactive elements deposited on soil. Molecular size distribution of the humic and fulvic acids was measured by stirred cell ultrafiltration technique and the structural informations were obtained from their UV-Vis., IR and synchronous fluorescence (SyF) spectral analysis. Main molecular size ranges of the soil 1) humic and fulvic acids were 30~100 kDa (46~56%) and 10~30 kDa (33~43%) respectively, and their overall molecular sizes were found to became smaller with increasing the soil depth. Absorptivities measured at 280 nm in the UV-Visible spectra of humic acids were 1.4~1.5 times higher than those of fulvic acids, and increased with increasing the soil depth. SyF spectral data showed two distinct peak components having maximum peak positions of 428 nm (type I) and 498 nm (type II) for the soil humic and fulvic acids. From the analysis of the peak components, it was found that humic molecules are mainly made up of aromatic compounds corresponding to longer wavelength (type II), and the molecular components increased with increasing the soil depth. Analysis of IR spectral data indicated that the humic molecules contain a higher relative concentration of carboxylic groups than those of fulvic molecules, and the carboxylic group contents are seen to increase as the soil depth increase.

Contribution Rate on Soil Pysico-Chemical Properties Related to Fruit Quality of 'Kyoho' Grapevines (포도 '거봉' 품질에 미치는 토양이화학성의 상대적 기여도)

  • Kim, Seung-Heui;Choi, In-Myung;Han, Jeom-Wha;Cho, Jung-Gun;Park, Seo-Jun;Lim, Tae-Jun;Yun, Hea-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.782-788
    • /
    • 2010
  • Detail management standard on soil conditions in 'Kyoho' grapes were not yet made. Therefore, this study was carried out to investigate the optimum soil environmental conditions on production of high fruit quality in 'Kyoho' grapes. We established using correlation between fruit quality and soil condition. These results were used to develop soil management guideline with promoting efficiency and minuteness in grape vineyard. Soil conditions were analyzed at total 80 vineyards in major grape producing areas such as Ansung, and Cheonan (40 orchards an area). The soil environmental factors affected fruit weight were soil pH of 36.6%, cultivation layer depth of 23.3%, and cation of 17.8%. The soil condition factors affected sugar content were soil hardness of 24.4%, cation of 24.1% and organic matter content of 22.1%. Cultivation layer depth, soil texture, and phosphate content were low as relative contribution. Coloring was involved with organic matter content, CEC (cation exchange capacity), and saturated hydraulic conductivity. while soil pH, cultivation layer depth, and phosphate content showed low contribution. Finally, relative contribution on fruit quality related with sugar content, fruit weight, and coloring were soil hardness of 28.0%, organic matter content of 25.0%, soil pH of 12.9%.

Paddy Soil Tillage Impacts on SOC Fractions

  • Jung, Won-Kyo;Han, Hee-Suk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.4
    • /
    • pp.326-329
    • /
    • 2007
  • Quantifying soil organic carbon (SOC) has long been considered to improve our understanding of soil productivity, soil carbon dynamics, and soil quality. And also SOC could contribute as a major soil management factor for prescribing fertilizers and controlling of soil erosion and runoff. Reducing tillage intensity has been recommended to sequester SOC into soil. On the other hand, determination of traditional SOC could barely identify the tillage practices effect. Physical soil fractionation has been reported to improve interpretation of soil tillage practices impact on SOC dynamics. However, most of these researches were focused onupland soils and few researches were conducted on paddy soils. Therefore, the objective of this research was to evaluate paddy soil tillage impact on SOC by physical soil fractionation. Soils were sampled in conventional-tillage (CT), partial-tillage (PT), no-tillage (NT), and shallow-tillage (ST)plots at the National Institute of Crop Science research farm. Samples were obtained at the three sampling depth with 7.5-cm increment from the surface and were sieved with 0.25- and 0.053-mm screen. Soil organic carbon was determined by wet combustion method. Significant difference of SOC contentwas found among sampling soil depth and soil particle size. SOC content tended to increase at the ST plot with increasing size of soil particle fraction. We conclude that quantifying soil organic carbon by physical soil particle fractionation could improve understanding of SOC dynamics by soil tillage practices.

Response of circular footing on dry dense sand to impact load with different embedment depths

  • Ali, Adnan F.;Fattah, Mohammed Y.;Ahmed, Balqees A.
    • Earthquakes and Structures
    • /
    • v.14 no.4
    • /
    • pp.323-336
    • /
    • 2018
  • Machine foundations with impact loads are common powerful sources of industrial vibrations. These foundations are generally transferring vertical dynamic loads to the soil and generate ground vibrations which may harmfully affect the surrounding structures or buildings. Dynamic effects range from severe trouble of working conditions for some sensitive instruments or devices to visible structural damage. This work includes an experimental study on the behavior of dry dense sand under the action of a single impulsive load. The objective of this research is to predict the dry sand response under impact loads. Emphasis will be made on attenuation of waves induced by impact loads through the soil. The research also includes studying the effect of footing embedment, and footing area on the soil behavior and its dynamic response. Different falling masses from different heights were conducted using the falling weight deflectometer (FWD) to provide the single pulse energy. The responses of different soils were evaluated at different locations (vertically below the impact plate and horizontally away from it). These responses include; displacements, velocities, and accelerations that are developed due to the impact acting at top and different depths within the soil using the falling weight deflectometer (FWD) and accelerometers (ARH-500A Waterproof, and Low capacity Acceleration Transducer) that are embedded in the soil in addition to soil pressure gauges. It was concluded that increasing the footing embedment depth results in increase in the amplitude of the force-time history by about 10-30% due to increase in the degree of confinement. This is accompanied by a decrease in the displacement response of the soil by about 40-50% due to increase in the overburden pressure when the embedment depth increased which leads to increasing the stiffness of sandy soil. There is also increase in the natural frequency of the soil-foundation system by about 20-45%. For surface foundation, the foundation is free to oscillate in vertical, horizontal and rocking modes. But, when embedding a footing, the surrounding soil restricts oscillation due to confinement which leads to increasing the natural frequency. Moreover, the soil density increases with depth because of compaction, which makes the soil behave as a solid medium. Increasing the footing embedment depth results in an increase in the damping ratio by about 50-150% due to the increase of soil density as D/B increases, hence the soil tends to behave as a solid medium which activates both viscous and strain damping.

Soil Properties in Quercus mongolica Communities (신갈나무림의 군집별 토양특성)

  • 박관수;장규관
    • Korean Journal of Environment and Ecology
    • /
    • v.12 no.3
    • /
    • pp.236-241
    • /
    • 1998
  • This study was to compare soil characteristics among Quercus mongolica communities that characterize the boreal-temperate deciduous forest in Korea. The classification of Quercus mongolica community and soil sampling were carried in Mt. Odae and Mt. Jungwang in Kangwondo from April of 1991 to October of 1994. The study area was classified as 5 Quercus mongolica communities with Braun-Blanquet method as follows; Quercus mongolica - Abies nephrolepis, Quercus mongolica - Acer pseudosieboldianum, Quercus mongolica - Lindera obtusiloba, Quercus mongolica - Acer mandshuricum, and Quercus mongolica - Carpinus cordata communities. Quercus mongolica - Abies nephorolepis community had the most shallow depth of A horizon(5cm) among communities, and root penetration was mainly from 0 to 10cm soil depth, and they had a dry soil moisture condition. Depth of A horizon of Quercus mongolica - Lindera obtusiloba and Quercus mongolica - Acer mandshuricum communities was about 20cm, and root penetration was mainly from 0 to 20cm soil depth, and they had a slightly dry soil moisture condition. Quercus mongolica - Acer mandshuricum, and Quercus mongolica -Carpinus cordata communities had the deepest depth of A horizon(35cm) and root was well developed over 45cm, and they had a moderately-slight dry soil condition. The soil organic matter, total N, exchangeable Ca, Mg and K concentration and CEC was the greatest in Quercus mongolica-Acer mandshuricum community and Quercus mongolica-Carpinus cordata community among communities. Quercus mongolica - Abies nephyolepis community had the smallest soil organic matter, total N, and CEC among communities. There were large differences among Quercus mongolica communities by soil properties and the result may be due to different habitat positions in the landscape among communities.

  • PDF

Effect of Long Term Fertilization on Soil Carbon and Nitrogen Pools in Paddy Soil

  • Lee, Chang Hoon;Jung, Ki Youl;Kang, Seong Soo;Kim, Myung Sook;Kim, Yoo Hak;Kim, Pil Joo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.3
    • /
    • pp.216-222
    • /
    • 2013
  • Fertilizer management has the potential to promote the storage of carbon and nitrogen in agricultural soils and thus may contribute to crop sustainability and mitigation of global warming. In this study, the effects of fertilizer practices [no fertilizer (Control), chemical fertilizer (NPK), Compost, and chemical fertilizer plus compost] on soil total carbon (TC) and total nitrogen (TN) contents in inner soil profiles of paddy soil at 0-60 cm depth were examined by using long-term field experimental site at $42^{nd}$ years after installation. TC and TN concentrations of the treatments which included N input (NPK, Compost, NPK+Compost) in plow layer (0-15 cm) ranged from 19.0 to 26.4 g $kg^{-1}$ and 2.15 to 2.53 g $kg^{-1}$, respectively. Compared with control treatment, SOC (soil organic C) and TN concentrations were increased by 24.1 and 31.0%, 57.6 and 49.7%, and 72.2 and 54.5% for NPK, Compost, and NPK+Compost, respectively. However, long term fertilization significantly influenced TC concentration and pools to 30 cm depth. TC and TN pools for NPK, Compost, NPK+Compost in 0-30 cm depth ranged from 44.8 to 56.8 Mg $ha^{-1}$ and 5.78 to 6.49 Mg $ha^{-1}$, respectively. TC and TN pools were greater by 10.5 and 21.4%, 30.3 and 29.6%, and 39.9 and 36.3% in N input treatments (NPK, Compost, NPK+Compost) than in control treatment. These resulted from the formation and stability of aggregate in paddy soil with continuous mono rice cultivation. Therefore, fertilization practice could contribute to the storage of C and N in paddy soil, especially, organic amendments with chemical fertilizers may be alternative practices to sequester carbon and nitrogen in agricultural soil.

Effect of Soil Textures on Fruit Yield, Nitrogen and Water Use Efficiencies of Cucumber Plant as Affected by Subsurface Drip Fertigation in the Greenhouse

  • Lim, Tae-Jun;Park, Jin-Myeon;Park, Young-Eun;Lee, Seong-Eun;Kim, Ki-In
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.372-378
    • /
    • 2015
  • Growing crops under different soil textures may affect crop growth and yield because of soil N availability, soil N leaching, and plant N uptake. The objective of this study was to evaluate effects of three different soils (sandy loam, loam, and clay loam) on cucumber (Cucumis sativus L.) yield, nitrogen (N) use efficiency (NUE), and water use efficiency (WUE) by subsurface drip fertigation in the greenhouse. Three different soil textures are sandy loam, loam, and clay loam with 3 replications. The dimension of each lysimeter was $1.0m(W){\times}1.5m(L){\times}1.0m(H)$. Cucumber was transplanted on April $8^{th}$ and Aug $16^{th}$ in 2011. The subsurface drip line and tensiometer was installed at 30 and 20 cm soil depth, respectively. An irrigation with $100mg\;NL^{-1}$ concentration was automatically applied when the tensiometer reading was 10 kPa. Volumetric soil water content for cucumber cultivation was the highest in 30 cm soil depth regardless of soil texture and was lowered when soil depth was deeper. The volumetric soil water contents at soil depths of 10, 30, 50, and 70 cm were the highest at clay loam, followed by loam, and sandy loam. The growth of cucumber at the $50^{th}$ day after transplanting was the lowest at sandy loam. Cucumber fruit yields were similar for all three soil textures. The highest amount of water use at sandy loam was observed. Nitrogen and water use efficiencies for cucumber were higher for clay loam, followed by loam and sandy loam, while the amount of N leaching was the greatest under sandy loam, followed by loam, and clay loam. Overall, growing cucumber on either loam or clay loam is better than sandy loam if subsurface drip fertigation is used in the greenhouse.