• Title/Summary/Keyword: SOIL DEPTH

Search Result 2,463, Processing Time 0.031 seconds

Evaluation of Kinetic Energy of Raindrops at Daejeon city using Laser-optical Disdrometer (레이저-옵티컬 디스드로미터를 활용한 대전지역의 강우에너지 특성 평가)

  • LIM, Young Shin;KIM, Jong Wook;KIM, Jin Kwan;PARK, Byong Ik
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.2
    • /
    • pp.133-143
    • /
    • 2012
  • To evaluate the kinetic energy of the raindrops, the drop size distribution and the terminal velocity of the raindrops had been measured from January to September 2010 using the laser-optical disdrometer in KIGAM, Daejeon, Korea. The relationship between kinetic energy (KE) and rainfall intensity (I) was computed as logarithmic and exponential model, respectively, under the rainfall intensity of about 142mm/h. The exponential model is more suitable for the relationship of KE-I than the logarithmic model, because the exponential model presented better fit for KE over 50mm/h of rainfall intensity. Meanwhile, the differences of the total kinetic energy existed in rainfall events with almost same total rainfall depth, and KE values of Daejeon at high rainfall intensity underestimated rather than the others under temperate climate. Therefore, these differences of KE in rainfall events and geographical regions imply the result from the variations of rainfall intensity within a rainfall event.

Evaluationof Phosphorus Rateand Mixing Depthonthe Growthand Establishment of Kentucky bluegrass(Poapratensis L.) in Sand-Based Systems (모래 조건에서 캔터키블루그래스의 생장과 정착에 대한 인산의 양과 혼합 깊이가 미치는 영향)

  • Lee, Sang-Kook;Minner, David D.;Nick E., Christians;Taber, Henry G.
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.2
    • /
    • pp.353-360
    • /
    • 2009
  • Phosphorus (P) is one of the essential elements of the phospholipids that are involved in the formation of plant cell membranes. Phosphorus is highly immobile in soils and is often a limiting nutrient for plant growth. Phosphorus mobility and availability varies with several factors such as application frequency, placement in the soil, and the amount of irrigation or precipitation. This study was conducted to evaluate the effect of P applications at level of 0, 146, and 293 $kg{\cdot}ha^{-1}$ at four mixing depths (0, 7.6, 15.2, and 22.9 cm )on the growth and establishment of Kentucky bluegrass (Poapratensis L.) in a sand-based system.Grass clipping samples were collectedevery two weeks, dried, and weighed. Total root dry weight, root organic matter, and tissue content of P were measured at the end of the study. Leachate was collected weekly and analyzed for total P concentration. No difference was found between application of P to the surface and to the 7.6 cm mixing depth. However, surface application with 146 and 293 kg $P{\cdot}ha^{-1}$ produced 8-10% and 16-20% more P in tissue than subsurface applications, respectively.

Effect of Paddy BMPs on Water Quality and Policy Consideration in Saemangeum Watershed (새만금 유역에서 논 최적관리기법의 수질개선 효과와 정책고려사항)

  • Kim, Jonggun;Lee, Suin;Shin, Jae-young;Lim, Jung-ha;Na, Young-kwang;Joo, Sohee;Shin, Minhwan;Choi, Joongdae
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.304-313
    • /
    • 2018
  • Agricultural land reclamation in Saemangeum tidal land project is mostly planned to be completed by 2020. Irrigation water for the land is required to be prepared by that time. However, water quality for the irrigation sources is barely meet the target concentration. This paper described the reduction effect of and policy consideration for best management practices (BMPs) which were fertilizer prescription by soil test (SO#1), mixed application of SO#1 and 3 (SO#2), drainage gate control (SO#3), time-release fertilizer application (SO#4), and control (CT). Reduction of paddy runoff was relatively higher in SO#3 (25%) and SO#1 (27%) while lower in SO#4 (9%) and SO#2 (7%) than that in CT. In addition, farmers promised to follow the BMP guidelines but they didn't because of the several problems caused for the BMPs implementation. Thus, it recommended developing an automated control of irrigation gate and paddy water depth and supporing farmers for NPS pollution control and irrigation water reduction.

Application of dual drainage system model for inundation analysis of complex watershed (복합유역의 침수해석을 위한 이중배수체계 유출모형의 적용)

  • Lee, Jaejoon;Kwak, Changjae;Lee, Sungho
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.4
    • /
    • pp.301-312
    • /
    • 2019
  • The importance of the dual drainage system model has increased as the urban flood damage has increased due to the increase of local storm due to climate change. The dual drainage model is a model for more accurately expressing the phenomena of surface flow and conduit flow. Surface runoff and pipe runoff are analyzed through the respective equations and parameters. And the results are expressed visually in various ways. Therefore, inundation analysis results of dual drainage model are used as important data for urban flood prevention plan. In this study, the applicability of the COBRA model, which can be interpreted by combining the dual drainage system with the natural watershed and the urban watershed, was investigated. And the results were compared with other dual drainage models (XP-SWMM, UFAM) to determine suitability of the results. For the same watershed, the XP-SWMM simulates the flooding characteristics of 3 types of dual drainage system model and the internal flooding characteristics due to the lack of capacity of the conduit. UFAM showed the lowest inundation analysis results compared with the other models according to characteristics of consideration of street inlet. COBRA showed the general result that the flooded area and the maximum flooding depth are proportional to the increase in rainfall. It is considered that the COBRA model is good in terms of the stability of the model considering the characteristics of the model to simulate the effective rainfall according to the soil conditions and the realistic appearance of the flooding due to the surface reservoir.

A analysis of plant communities distribution characteristics of Boseong river wetland using ordination (서열법(ordination)을 이용한 보성강 하천 습지의 식물군락 분포 특성 분석)

  • Lee, Il Won;Kim, Kee Dae
    • Journal of Wetlands Research
    • /
    • v.24 no.4
    • /
    • pp.354-366
    • /
    • 2022
  • To analyze the distribution of plant communities growing in river wetlands and the relationship between biotic and abiotic environmental factors, plant communities and environmental factors were investigated in river wetlands in the Boseong River. The Boseong River Wetland, the research site, consists of Hwapyeong Wetland, Bangujeong Wetland, and Seokgok Wetland. From June to September 2022, a plant community survey was conducted from the perspective of physiognomical vegetation, and the coverage of the emerging species followed the Braun-Blanquet scale. Plant species and the coverage of each species were recorded in the quadrant for plant community survey, and the cover of the quadrant, the total number of species, and the number of exotic species were measured as biological factors. As abiotic factors, altitude, orientation, inclination, soil texture, litter layer depth, dominant species diameter at breast height, and topography were recorded. In a total of 50 square plots, the most common Salix koreensis and Phragmites japonicus communities were found, and the community with the highest Shannon species diversity index was Phragmites japonicus-Echinochloa caudata community. As a result of ordination analysis by DCCA, the most significant clusters were separated according to topographic factors such as leeve, leeve slope, upper floodplain, lower floodplain, upper waterside, middle waterside, lower waterside, river island and opem water. As rare plants that need to be preserved in river wetlands, Hydrocharis dubia and Penthorum chinense were found in lower waterside, and it was found that the management of the river in the reservoir is necessary in line with the topographical distribution of ecosystem-disrupting plants, such as Paspalum distichum var. indutum.

Study on the Rational Construction Method Using Analysis of the Case Study of PHC Pile Foundation in Song-Do Area (송도지역 내 PHC 말뚝기초 적용사례분석을 통한 적정 시공방법 연구)

  • Lee, Byengho;Lee, Jonghwi;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.3
    • /
    • pp.55-61
    • /
    • 2011
  • Song-Do international city is the area developed in large-scale land reclamation. Song-Do area consists of reclamation layer, sedimentary layer(loose silt, soft clay and sand alternating) and residual layer from the ground surface. Therefore, using pile foundation is inevitable to build structures safely. In this area, driven PHC piles have been generally constructed in terms of environmental and economic conditions. As a result of analyzing 4 sites in Song-Do district 5 and 7 recently, the method of driving pile has many problems because of existence of rigid soil in sedimentary layer and installation of more than 30m piles. In this case, when installing piles by drive after pre-boring up to appropriate depth, the results of constructability analysis were very good. And in the economic efficiency, although 4% of construction cost rose, it was a very slight increase in comparison with improvement of workability. In the case of the stability, more than 70% compared to the allowable stress of piles was satisfied through the load test. As a result, when PHC piles is installed in Song-Do district, the proper construction method is that piles are located at bearing layer after boring rigid sand layer.

Natural Frequency Measurement for Scour Damage Assessment of Caisson Pier (교량 우물통 기초의 세굴피해 평가를 위한 고유진동수 측정)

  • Nguyen, Quang-Thien-Buu;Ko, Seok-Jun;Jung, Gyungja;Lee, Ju-Hyung;Yoo, Min-Taek;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.51-60
    • /
    • 2021
  • River scour erodes the soil around the pier, reducing the lateral bearing capacity of the pier and lowering the stability of the structure. In this study, in order to examine the effect of scouring on the stability of the structure, an experiment was performed to measure the natural frequency of the pier according to the excavation of the surrounding ground. Impact vibration test was conducted on the pier with the caisson foundation of the Mangyeonggang Bridge, which is scheduled to be demolished. Accelerometers were attached to the top, center, and bottom of the pier and the acceleration responses were measured by hitting those three points. The experimental results showed that the top hit showed consistent and reasonable results of the acceleration responses according to the hitting position. The measured accelerations were converted to the frequency domain through Fast Fourier Transform (FFT), and then the natural frequency was determined. In addition, to analyze the scour effect on the natural frequency of the pier, the ground around the pier was excavated and the natural frequency change was analyzed. As a result, the natural frequency showed the decreasing tendency according to the excavation depth, but the decrease was small due to the large stiffness of the caisson foundation.

A Study on the Types of Crime and Scalability in Metaverse (메타버스 내 범죄발생 유형과 확장성에 관한 연구)

  • Song, HyeJin;Nam, Wanwoo
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.218-227
    • /
    • 2022
  • Purpose: In the case of cavity discovered by ground penetrating radar exploration, it is necessary to accurately predict the filling amount in the cavity in advance, fill the cavity sufficiently and exert strength to ensure stability and prevent ground subsidence. Method: The cavity waveform analysis method by GPR exploration and the method using the cavity shape imaging equipment were performed to measure the cavity shape with irregular size and shape of the actual cavity, and the amount of cavity filling of the injection material was calculated during rapid restoration. Result: The expected filling amount was presented by analyzing the correlation between the cavity size and the filling amount of injection material according to the cavity scale and soil depth through the method by GPR exploration and the cavity scale calculation using the cavity shaping equipment. Conclusion: The cavity scale measured by the cavity imaging equipment was found to be in the range of 20% to 40% of the cavity scale by GPR exploration. In addition, the filling amount of injection material compared to the cavity scale predicted by GPR exploration was in the range of about 60% to 140%, and the filling amount of the injection material compared to the cavity size by the cavity shaping equipment was confirmed to be about 260% to 320 Purpose: The purpose of this study is to examine the types of crimes taking place in the metaverse, and to establish a crime prevention strategy and find a legal deterrent against it. Method: In order to classify crime types in the metaverse, crime types were analyzed based on the results of previous studies and current incidents. Result: Most of the crimes taking place in the metaverse are done in games such as Roblox or Zeppetto. Most of the game users were teenagers. Looking at the types, there are many teens for sexual crimes, violent crimes, and defamation, but professional criminals are often included in copyright infringement, money laundering using virtual currency, and fraud. Conclusion: Since the types of crimes in the metaverse are diverse, various institutional supplementary mechanisms such as establishment of police crime prevention strategies, legal regulations, and law revisions will have to be prepared.

Comparison of performance of automatic detection model of GPR signal considering the heterogeneous ground (지반의 불균질성을 고려한 GPR 신호의 자동탐지모델 성능 비교)

  • Lee, Sang Yun;Song, Ki-Il;Kang, Kyung Nam;Ryu, Hee Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.4
    • /
    • pp.341-353
    • /
    • 2022
  • Pipelines are buried in urban area, and the position (depth and orientation) of buried pipeline should be clearly identified before ground excavation. Although various geophysical methods can be used to detect the buried pipeline, it is not easy to identify the exact information of pipeline due to heterogeneous ground condition. Among various non-destructive geo-exploration methods, ground penetration radar (GPR) can explore the ground subsurface rapidly with relatively low cost compared to other exploration methods. However, the exploration data obtained from GPR requires considerable experiences because interpretation is not intuitive. Recently, researches on automated detection technology for GPR data using deep learning have been conducted. However, the lack of GPR data which is essential for training makes it difficult to build up the reliable detection model. To overcome this problem, we conducted a preliminary study to improve the performance of the detection model using finite difference time domain (FDTD)-based numerical analysis. Firstly, numerical analysis was performed with homogeneous soil media having single permittivity. In case of heterogeneous ground, numerical analysis was performed considering the ground heterogeneity using fractal technique. Secondly, deep learning was carried out using convolutional neural network. Detection Model-A is trained with data set obtained from homogeneous ground. And, detection Model-B is trained with data set obtained from homogeneous ground and heterogeneous ground. As a result, it is found that the detection Model-B which is trained including heterogeneous ground shows better performance than detection Model-A. It indicates the ground heterogeneity should be considered to increase the performance of automated detection model for GPR exploration.

Evaluation of Flood Regulation Service of Urban Ecosystem Using InVEST mode (InVEST 모형을 이용한 도시 생태계의 홍수 조절서비스 평가)

  • Lee, Tae-ho;Cheon, Gum-sung;Kwon, Hyuk-soo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.6
    • /
    • pp.51-64
    • /
    • 2022
  • Along with the urbanization, the risk of urban flooding due to climate change is increasing. Flood regulation, one of the ecosystem services, is implemented in the different level of function of flood risk mitigation by the type of ecosystem such as forests, arable land, wetlands etc. Land use changes due to development pressures have become an important factor in increasing the vulnerability by flash flood. This study has conducted evaluating the urban flood regulation service using InVEST UFRM(Urban Flood Risk Model). As a result of the simulation, the potential water retention by ecosystem type in the event of a flash flood according to RCP 4.5(10 year frequency) scenario was 1,569,611 tons in urbanized/dried areas, 907,706 tons in agricultural areas, 1,496,105 tons in forested areas, 831,705 tons in grasslands, 1,021,742 tons in wetlands, and 206,709 tons in bare areas, the water bodies was estimated to be 38,087 tons. In the case of more severe 100-year rainfall, 1,808,376 tons in urbanized/dried areas, 1,172,505 tons in agricultural areas, 2,076,019 tons in forests, 1,021,742 tons in grasslands, 47,603 tons in wetlands, 238,363 tons in bare lands, and 52,985 tons in water bodies. The potential economic damage from flood runoff(100 years frequency) is 122,512,524 thousand won in residential areas, 512,382,410 thousand won in commercial areas, 50,414,646 thousand won in industrial areas, 2,927,508 thousand won in Infrastructure(road), 8,907 thousand won in agriculture, Total of assuming a runoff of 50 mm(100 year frequency) was estimated at 688,245,997 thousand won. In a conclusion. these results provided an overview of ecosystem functions and services in terms of flood control, and indirectly demonstrated the possibility of using the model as a tool for policy decision-making. Nevertheless, in future research, related issues such as application of models according to various spatial scales, verification of difference in result values due to differences in spatial resolution, improvement of CN(Curved Number) suitable for the research site conditions based on actual data, and development of flood damage factors suitable for domestic condition for the calculation of economic loss.