• Title/Summary/Keyword: SOIL COMPACTION

Search Result 638, Processing Time 0.028 seconds

An Experimental Study on the Effectiveness of Soil Compaction at Below-Freezing Temperatures (동결 온도에서 다짐효과에 관한 실험적 연구)

  • Hwang, BumSik;Chae, Deokho;Kim, Youngseok;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.1
    • /
    • pp.37-43
    • /
    • 2015
  • Korea has four distinct seasons, showing hot and humidity in summer and cold weather lasted in winter. Domestic research on earth work has been developed according to the seasonal characteristics, and most of research topics have focused on the effect of freezing-thawing on the performance of geo-materials. However, the previous research was performed on the ground compacted at room temperature and therefore, the effect of the sub-zero temperature at the time of construction was not fully investigated. The ground characteristics compacted at freezing temperature can be different from those at room temperature and show different characteristics of strength and deformation caused by freezing and thawing. Therefore, the compaction tests on sandy materials were conducted under various temperature at $-3^{\circ}C$ and $-8^{\circ}C$ with various fine contents of 0%, 5%, 10% and 15% in weight fraction. The effectiveness of soil compaction at below-freezing temperatures were compared with the compaction at room temperature at $18^{\circ}C$ in terms of the maximum dry unit weight and optimum water contents. Based on the test results, the maximum dry unit weight tends to decrease with the freezing temperature and the relative compaction at $-8^{\circ}C$ can not be satisfied with general specification standard.

Permeability Effect of Decomposed Granite Soil under the Influence of Crushability and Compaction Energy (화강풍화토(花崗風化土)의 파쇄(破碎) 및 다짐에너지가 투수성(透水性)에 미치는 영향(影響))

  • Lee, Hyoung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.3
    • /
    • pp.107-116
    • /
    • 1983
  • This paper is concerned with the permeability through a decomposed granite soil layer which is influnced by change of grain sizes and crushed soils made by varied compaction energy. The change in the content of crushed soils can be described in terms of the ratio of surface area ($S_w{^{\prime}}/S_w $). The experiments were carried out to obtain the relationships of the coefficient of permeability(K) versus the optimum moisture content($w_{opt}$) by the variable head permeability test with the samples that were preapared by compaction test. The results are found as follows; (1) By the change in compaction energy, the crush ratio increased whereas the void ratio decreased with a larger maximum dry density running in parallel with the zero air void curve. (2) The ratio of surface area was $0.33(P)^{0.96}$ in $S_w{^{\prime}}/S_w $ with no relation to the compaction energy. (3) The grain size which produced the largest crush of soil particles ranged from 0.5 to 1 millimetre (4) The relationship of K versus $e^3$/1+e appeared as a straight line on the full-log-scale paper under the optimum moisture state. (5) As the compaction energy was larger, the passing percentage of #200-sieve grains increased linearly. The increment in the surface area ratio was deemed to have been caused by the decreased in the permeability.

  • PDF

Strength and Compaction Characteristics of Binder-Stabilized Subgrade Material in Ulsan Area - Main Binder Components : CaO and SO3 - (고화제로 안정처리 된 울산지역 노상재료의 강도 및 다짐특성 - 주 성분이 CaO와 SO3인 고화제 -)

  • Han, Sang-Hyun;Yea, Geu-Guwen;Kim, Hong-Yeon
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.105-113
    • /
    • 2018
  • In this study, the engineering properties including bearing capacity of subgrades stabilized with a binder are analyzed by laboratory and field experiments. The main components of the binder are CaO and $SO_3$. After the binder was mixed with a low plasticity clay, the passing rates were relatively decreased as the sieve mesh size increased. Not only did the soil type change to silty sand, but engineering properties, such as the plasticity index and modified California bearing ratio (CBR), were improved for the subgrade. A comparison of the compaction curves of the stabilized subgrade and field soil compacted with the same energy demonstrated an increase of approximately 6% in the maximum dry unit weight, slight decrease in optimum moisture content, and considerable increase improvement in grain size. In the modified CBR test, the effect of unit weight and strength increase of the modified soil (with a specific amount of binder) was remarkably improved. As the proportion of granulated material increased after the addition of binder, the swelling was reduced by 3.3 times or more during initial compaction and 6.5 times by final compaction. The unconfined compressive strength of the specimens was maintained at the homogeneous value with a constant design strength. The stabilized subgrade was validated by applying it in the field under the same conditions; this test demonstrated that the bearing capacity coefficients at all six sites after one day of compaction exceeded the target value and exhibited good variability.

Laboratory Tests for the Applicability of Various Testing Devices for Measuring Degree of Compaction (여러가지 다짐 평가장비의 적용성을 위한 실내시험)

  • Yoo, Wan-Kyu;Lim, Nam-Gyu;Kim, Byoung-Il;Kim, Ju-Hyong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1178-1187
    • /
    • 2008
  • Quality assurance for embankment compaction is one of very important procedures to guarantee high quality construction. However, only sand replacement method (KS F2312) and static plate load test (KS F2310) which are conventional and tiresome methods are used to evaluate degree of compaction at construction fields. Recently, new types of devices such as the geogauge and the light falling weight deflectometer (LFWD), the soil impact hammer (CASPFOL) and dynamic cone penetration test etc. which are able to substitute for the conventional methods are begun to use to evaluate soil stiffness. In this study, a laboratory model test was performed to evaluate correlations among test results obtained from the new devices and to assess the potential use of them. All test results have correlations with relative density and water content. Especially, the coefficients of correlation between $E_G$ from the geogauge and $K_{30'}$ from the soil impact hammer and between $E_G$ from the geogauge and $E_{LFWD}$ from LFWD are more than 0.7 but those between the results from DCP and others are less than those between $E_{G{\cdot}}$ and $K_{30'}$ and $E_G$ and $E_{LFWD}$.

  • PDF

Logging for Diametric Variation of Granular Compaction Pile Using Crosshole Seismic Tests (크로스홀 탄성파 시험을 이용한 쇄석다짐말뚝의 시공직경 검측)

  • Park, Chul-Soo;Jung, Jae-Woo;Kim, Hak-Sung;Kim, Eun-Jung;Mok, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1415-1426
    • /
    • 2008
  • Stone columns, locally called "GCP (granular compaction pile)" can be used to improve strength and resistance against lateral movement of a foundation soil like rigid piles and piers. Also installation of such a discrete column facilitates drainage, and densifies and reinforces the soil in the sense of ground improvement. The integrity of the GCP has been indirectly controlled with the records of each batch including depth and the quantity of stone filled. An integrity testing was attempted using crosshole S-wave logging. The method is conceptionally same as the crosshole sonic logging (CSL) for drilled piers. The only and critical difference is that S-wave should be used in the logging, because P-wave velocity of the stone column is less than that of ground water. The crosshole sonic logger does not have the capability to measure S-wave propagating through the skeleton of crushed stone. An electro-mechanical source, which can generate either P- or SH-waves, and a 1-D geophone were used to measure SH-waves. Two 76mm diameter cased boreholes were installed 1 meter apart across the nominal 700mm diameter stone column. At every 10cm of depth, shear wave was measured across the stone column. One more borehole was also installed 1 meter outward from the one of the above boreholes to measure the shear wave profile of the surrounding soil. The diametric variation of the stone column with respect to depth was evaluated from the shear wave arrival times across the stone column, and shear wave velocities of crushed stone and surrounding soil. The volume calculated with these variational diameters is very close to the actual quantity of the stone filled.

  • PDF

Centrifuge Model Experiments for Lateral Soil Movements of Piled Bridge Abutments. (교대말뚝기초의 측방유동에 관한 원심모형실험)

  • Choi, Dong-Hyurk;Jeong, Gil-Soo;Park, Byung-Soo;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.63-71
    • /
    • 2005
  • This paper is an experimental result of investigating lateral soil movements at piled bridge abutments by using the centrifuge model facility. Three different centrifuge model experiments, changing the methods of ground improvement at bridge abutment on the soft clayey soil (no improvement, preconsolidation and plastic board drains (PBD), sand compaction pile (SCP) + PBD), were carried out to figure out which method is the most appropriate for resisting against the lateral soil movements. In the centrifuge modelling, construction process in field was reconstructed as close as possible. Displacements of abutment model, ground movement, vertical earth pressure, cone resistance after soil improvement and distribution of water content were monitored during and after centrifuge model tests. As results of centrifuge model experiments, preconsolidation method with PBD was found to be the most effective against the lateral soil movement by analyzing results about displacements of abutment model, ground movement and cone resistance. Increase of shear strength by preconsolidation method resulted in increasing the resistance against lateral soil movement effectively although SCP could mobilize the resistance against lateral soil movement. It was also found that installment with PBD beneath the backfill of bridge abutment induced effective drainage of excess pore water pressure during the consolidation by embanking at the back of the abutment and resulted in increasing the shear strength of clay soil foundation and eventually increasing the resistance of lateral soil movement against piles of bridge abutment.

  • PDF

Evaluation of Low-temperature Compaction Characteristics According to Organic Matter Content through Laboratory Compaction Tests (실내 다짐시험을 통한 유기물 함량에 따른 저온 다짐 특성 분석)

  • Choi, Hyun-Jun;Kim, Sewon;Lee, Seungjoo;Park, Hyeontae;Choi, Hangseok;Kim, YoungSeok
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.3
    • /
    • pp.93-100
    • /
    • 2024
  • Pore water freezes in low-temperature compaction, which leads to different compaction characteristics compared to room temperature conditions. In regions like Alberta, Canada, where organic soils are prevalent, compaction performance is influenced by the high water retention and compressibility of organic soils, as well as their sensitivity to freezing and thawing. Alberta's strict environmental regulations demand the reuse of excavated soil for backfill, and the long winter season creates challenging conditions for civil engineering projects. In this study, a laboratory compaction test was conducted to evaluate the low-temperature compaction characteristics of organic soils with varying organic content. The results indicate that the optimum moisture content increases as the organic content increases, and the maximum dry unit weight decreases by up to 21.9%. In addition, under temperature conditions below -4℃, no optimum moisture content was observed, and the dry unit weight decreased as the moisture content increased.

A State of the Art for the Vibrated Crushed-stone Compaction Pile (진동쇄석다짐말뚝공법의 기술적 수준)

  • Choi, Yong-Kyu;Kim, Won-Cheul;Jung, Chang-Kyu;Lee, Min-Hee;Kim, Tae-Hoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.3
    • /
    • pp.65-77
    • /
    • 2002
  • Based from the results of various field and laboratory tests, it was determined that VCCP(Vibrated Crushed-stone Compaction Pile) Method is more effective compared to SCP(Sand Compaction Pile) Method. VCCP method effectively increases soil bearing capacity and reinforces soil and slopes, prevents liquefaction, enhances drainage. But when it comes to the engineering design these factors are not considered, instead designs are performed using practical methods and equations. Furthermore, this method is very economical since crushed stone can be used instead of sand and it can be also used in off-shore construction. In this paper, it will be synthetically considered technical state at the present time, research object after this and necessity of research for VCCP Method.

  • PDF

Geotechnical Characteristics of Crude Oil-Contaminated Sands (원유(Crude-Oil)로 오염된 사질토외 공학적 특성)

  • Eun Chul Shin;Seung Seo Hong
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.1
    • /
    • pp.91-97
    • /
    • 1997
  • The result of an investigation conducted to study the effect of crude oil contamination on the geotechnical properties of sand is presented. The effect of the degree of oil contamination on compaction charateristics, shear strength, and one-dimensional compression charateristics has been investigated. The test results indicate that the compaction charateristics are somewhat influenced by oil contamination The angle friction of sand (based on total stress basis) decreases due to the presence of oil within the pore spaces in sand. The compression charateristics of sand are significantly influenced by oil contamination. The details of the tests conducted and the results are presented in the paper.

  • PDF

Application of sand compaction pile method of row replacement ratio as foundation of the dyke (호안기초로서 저치환율 모래다짐말뚝 공법의 적용)

  • Jin, Sung-Ki;Kim, Bum-Hyung;Kim, Jong-Seok;Im, Jong-Chul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.472-485
    • /
    • 2008
  • In this study, sand compaction pile method was adopted to improve the soft ground under the permanent dyke, namely west sea dyke of Incheon New Port. The row replacement ratio 30% was applied to consider the ground condition, environmental side and the construction cost of the site. The stability and displacement analysis was carried out by respectively SLOPE/W and PLAXIS 2D program. Based on this analysis, it is found that the safety factor and displacement is within an allowable criteria. The model experiment was carried out using the acryl soil box with $400(H){\times}1200(L){\times}250(W)mm$ to show the displacement of the dyke and behavior of soft ground. Based on this experiment results, it is found that the settlement does not occur from 1 and 2 loading phases and horizontal displacement of 0.0075% occurs from 2 phases. It is also found that the differential settlement occurs 0.05mm corresponding respectively 0.02% and 0.03% of the dyke height(15cm).

  • PDF