• Title/Summary/Keyword: SOIL COMPACTION

Search Result 638, Processing Time 0.027 seconds

Characteristics of Shear Strength for an Unsaturated Soil with the Matric Suction (흡인력에 따른 불포화토의 전단강도 특성)

  • Song, Chang-Seob;Choi, Dook-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.1
    • /
    • pp.82-90
    • /
    • 2007
  • In order to analyse the strength problems for an unsaturated soil, it is required to examine closely the characteristics of the parameters of shear strength which was changed with the metric suction and void ratio. To this ends, a triaxial compression test was conducted on the three samples-granular soil, cohesive soil and silty soil. The specimen was made by pressing the static pressure on the mold filled soil and was controled the void ratio with the different compaction ratio. And the test was performed by using the modified apparatus of the triaxial compression tester. The range of matric suction was 0-90 kPa.The measured results for the deviator stress and parameters of shear strength were analysed with the void ratio and the compaction ratio, and they were examined closely the characteristics of the strength for an unsaturated soil.

Characteristics of Permeability for an Unsaturated Soil (불포화토의 투수특성)

  • Song, Chang-Seob;Shin, Chang-Seob
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.4
    • /
    • pp.35-41
    • /
    • 2005
  • In order to analyse the flow problems for an unsaturated soil, it is required to examine closely the characteristics of the coefficient of permeability which is changing with the matric suction. To this ends, a permeability test was conducted on the three samples;granular soil, cohesive soil and silty soil. The specimen was made by pressing the static pressure on the mold filled with soil and the void ratio was controled with the different compaction ratio. And the test was performed by using the modified apparatus of the steady state method which was proposed by flute (1972). The range of matric suction was 0-90 kPa. The measured results for the coefficients of permeability were analysed with the void ratio and the compaction ratio, and it was examined closely the characteristics of the permeability for an unsaturated soil.

Strength Characteristics of Soil Concrete Using Jeju Volcaniclastic and Construction Techniques (제주도 석산 부산물인 화산토를 사용한 흙포장의 강도 및 시공 특성)

  • Hong, Chong-Hyun
    • Journal of Environmental Science International
    • /
    • v.20 no.1
    • /
    • pp.71-79
    • /
    • 2011
  • In this study, a series of soil concrete mixtures were tested for the compressive strength according to ratio of aggregate to binder, compaction energy, maximum aggregate size, ratio of silica fume to cement, and ratio of water to binder. The optimum mixing ratio of soil concrete mixtures composed of volcaniclastic, cement, silica fume, concrete polymer and water were analysed. The test results for optimum proportion were as follows ; (1)ratio of aggregate to binder was 4 : 1, (2)compaction energy level was level 2, (3)maximum aggregate size was 13 mm, (4)ratio of silica fume to cement was 10%, (5)ratio of water to binder was 25%. Also, dry type construction techniques were applied using the optimum soil concrete mixture. From the results of this study, the compressive strength of soil concrete and construction techniques were suitable for making eco-friendly soil pavement.

Behavior of a Reinforced Retaining Wall During Construction (보강토의 시공중 거동 평가)

  • 노한성;최영철;백종은;김영남
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.95-100
    • /
    • 2000
  • When compared with conventional retaining wall system, there are many advantages to reinforced soil such as cost effectiveness, flexibility and so on. The use of reinforced soil have been increased in the last 17 years in Korea. In this study, a full-scale reinforced soil with rigid facing were constructed to investigate the behavior of reinforcing system. The results of soil pressure and strain of reinforcement during construction are described. The influence of compaction on soil pressure and strain of reinforcement is addressed. The results show that lateral earth pressures on the wall are active state during backfill. It is obtained that the lateral soil pressure depends on the installation condition of pressure cell and construction condition. It is also observed that maximum tensile strains of reinforcement are located on 50cm to 150cm from the wall. Long-term measurement will be followed to verify the design assumptions with respect to the distribution of lateral stress in the reinforcement

  • PDF

An Experimental Study on the Ground Improvement of Waste Landfill (쓰레기매립지반 개량에 관한 실험적 연구)

  • Chon, Yong-Back;Jeong, Young-Gab
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.4
    • /
    • pp.341-348
    • /
    • 2004
  • This study experimented dividing compaction load by dynamic compaction test and an oil pressure hammer compaction test for consolidation strength characteristics experimental feedback about soil change aspect of waste landfill ground and revelation of compaction effect as underground research about consolidation behavior of waste landfill ground by compaction load, foot weight and percussion number of times were adapted differently each other with uniformity drop head when dynamic compaction test, and hammer scale and percussion number of times were adapted differently also when oil pressure hammer compaction test.

  • PDF

Study of the Intelligent Compaction Evaluation (연속 다짐 평가에 관한 연구)

  • Park, Keub-Bo;Kim, Ju-Hyong;Cho, Sam-Deok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.722-729
    • /
    • 2010
  • In this study, we considered the development for degree of compaction for intelligent compaction. In practice, any direct or indirect method can be used as a intelligent compaction method. A series of field tests was conducted using an accelerometer. This is quick and simple indirect methods of measuring soil stiffness. Each result was compared with the results from a plate load test. A prototype device for intelligent compaction was developed, and we evaluated its performance.

  • PDF

A study on A Optimum Dimension of A Taper Granular Compaction Pile by means of Numerical Analysis (수치해석을 통한 변단면쇄석다짐말뚝의 최적 제원에 관한 사례연구)

  • Kim, Chae-Min;Go, Young-Hyoun;Yea, Geu-Guwen;Choi, Yong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.113-121
    • /
    • 2010
  • Granular Compaction Pile are commonly used to improve bearing capacity and reduce settlements of soft soil in coastal and lowland areas. In this paper, through the field load test results of straight granular compaction piles and taper granular compaction piles, material properties of ground and GCP for numerical analysis were drawn and numerical model was established. In the numerical analysis of taper granular compaction piles with 3 different sections, a optimum dimension of taper granular compaction pile was considered at the side of settlement.

  • PDF

Effects of Soil Surface Compaction on Emergence and Growth of Directed Seeded Ginseng in Paddy Field (인삼의 논 재배시 파종 후 진압처리가 출아율과 생육에 미치는 영향)

  • Bong-Jae Seong;Moo-Geun Jee;Sun-Ick Kim;Jin-Woong Cho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.4
    • /
    • pp.362-366
    • /
    • 2022
  • This study was conducted to find out the changes in the growth and yield of ginseng and the changes in the soil of direct-seeded ginseng fields after applying different compaction strengths. As a result of surface soil compactions, the topsoil hardness increases as the strength of treatment increases in the first year but topsoil hardness increased only by applying 30 kg weight of compaction in the second year. The germination rate was significantly higher (79.4% and 79.1% at 25 kg and 30 kg, respectively) in 1st year after the application of soil surface compactions. The longest plant was 35.7 cm in 4- years old ginseng in the control and the height was 26.9 cm and 26.5 cm in the soil surface compactions of 25 kg and 30 kg, respectively. In addition, the higher weight of ginseng roots of 31.3 g and 30.3 g were observed after applying 25 kg and 30 kg compaction treatment, and the lowest root weight of 25.6 g was in the control. Therefore, it is shown that after sowing, applying the weight of 25 kg to 30 kg for soil surface compaction is appropriate for better yield in direct seeded cultivation of ginseng at paddy fields.

Effect of Soil Compaction Levels and Textures on Soybean (Glycine max L.) Root Elongation and Yield (토양 경반층 강도가 콩 뿌리신장 및 생육에 미치는 영향)

  • Jung, Ki-Yuol;Yun, Eul-Yoo;Park, Chang-Young;Hwang, Jae-Bok;Choi, Young-Dae;Jeon, Seung-Ho;Lee, Hwang-A
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.332-338
    • /
    • 2012
  • Soil compaction is one of the major problems facing modern agriculture. Overuse of machinery, intensive cropping, short crop rotations, intensive grazing and inappropriate soil management leads to compaction. This study was carried out evaluate of the effects soil texture and different compaction levels within the soil profile on the soybean root growth and productivity. The soybean plants were grown in $21cm{\o}{\times}30cm$ cylinder pots using three different soil textures (clay, fine loamy and coarse loamy) compacted at different compaction levels (1.25, 1.50, 1.75, and 2.00 MPa). Results revealed that soybean development is more sensitive on penetration resistance, irrespective of soil type. Soybean yield and root weight density significantly decreases with increasing levels of soil compaction in both clayey and fine loamy soils, but not in coarse loamy soil. The highest root weight density was recorded in coarse loamy soils, followed by fine loamy and clay soils, in descending order. The root growth by soil compaction levels started to decline from 1.16, 1.28 and 1.60 MPa for clay, fine loamy and coarse loamy soils. Soybean production in the field experiment decreased about 30% at compacted sub-soils compared to undisturbed soils.