• Title/Summary/Keyword: SOFC/GT hybrid system

Search Result 15, Processing Time 0.017 seconds

Performance Analysis of Hybrid SOFC/Uncooled GT System for Marine Power Applications (선박동력용 SOFC/GT(무냉각) 하이브리드시스템의 성능 평가)

  • Kim, Myoung-Hwan;Kil, Byung-Lea
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1050-1060
    • /
    • 2012
  • As an approach to high-efficiency of SOFC system, SOFC/GT Hybrid system is effective. However, if the output size of the system belongs to the marine class of dozens MWs, the introduction of the cooling system of GT system, which is used as sub-system, makes its related devices complicated and also makes its control difficult. Accordingly, for the marine use, SOFC/GT (non-cooling)Hybrid system looks more suitable than SOFC/GT(cooling)Hybrid system. This study established the SOFC/GT (non-cooling)Hybrid system, and examined the operating temperature & current density of the stack for the system, pressure ratio of the gas turbine, the influence of TIT(Turbine Inlet Temperature) on system performance, etc. through the simulation process. Through this research process, this study was able to confirm that electrical efficiency rises in spite of the increase in the required power for the air compressor, and there exists a limited range of temperatures for operation in TIT.

Performance Analysis of Hybrid SOFC/GT/ST System for Marine Power Applications (선박동력용 SOFC/GT/ST 하이브리드시스템의 성능 평가에 관한 시뮬레이션)

  • Lee, Kyung-Jin;Oh, Jin-Suk;Kim, Sun-Hee;Oh, Sae-Gin;Lim, Tae-Woo;Kim, Jong-Su;Lee, Jae-Hyun;Park, Sang-Kyun;Kim, Mann-Eung;Kim, Myoung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.40-50
    • /
    • 2012
  • The electrification of the waste heat of stack is necessary to enhance the efficiency of fuel cell system. For this purpose, the hybrid SOFC/GT/ST system is suitable. The purpose of this work is to predict the performance of methane fueled SOFC/GT/ST hybrid power system and to analyze the influence of operating temperature of stack, current density of stack, and gas turbine pressure ratio. According to the analysis, it is proved that the SOFC/GT/ST hybrid system suppress the rapid decrease in efficiency and lead to the significant improvement of efficiency as compared with SOFC system.

A Study on Proposing Practicable Configurations against Propeller Racing for SOFC/GT Hybrid System in Ships (프로펠러 레이싱에 대비한 SOFC/GT 하이브리드시스템의 대책 방안에 관한 기초적 연구)

  • Kim, Myoung-Hwan;Lim, Tae-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.256-261
    • /
    • 2008
  • The purpose of this study is to propose practicable configurations against Rapid Load Down like propeller racing of ships which have been using SOFC/GT hybrid system on board. This paper suggests four kinds of countermeasures against propeller racing. The types A and B keep a fixed load of SOFC and save a surplus electric power to a storage system. In types of C and D, the load of SOFC is changed with the propeller racing. The best desirable countermeasure for Rapid Load Down depends upon the size of the ship, the propulsion power, and the characteristics of the engine system.

Performance and Safety Analysis of Marine Solid Oxide Fuel Cell and Gas Turbine Hybrid Power System (under Conditions of Turbine Cooling and Constant TIT) (선박동력용 SOFC/GT 하이브리드시스템의 성능 및 안전성 해석 (터빈 냉각 및 TIT 일정 조건을 중심으로))

  • Kim, Myoung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.484-496
    • /
    • 2009
  • The strengthened regulations for atmospheric emissions from ships like MARPOL Annex VI have caused a necessity of new, alternative power system in ships for the low pollutant emissions and the high energy efficiency. This paper attempts to investigate the configuration of SOFC/GT hybrid power system for LNG tanker taking into account the safety and to analyze the influence of design parameters on the system performance. The simulation results provide the basic data for the design and efficiency improvement of SOFC/GT hybrid system and indicate the guidelines for the safe system operation.

A Study on Aerodynamic Design and Flow Characteristics of a Centrifugal Compressor for SOFC-Gas Turbine Hybrid System (SOFC-GT 혼합시스템용 원심압축기 공력설계 및 유동특성 연구)

  • Choi, Jae-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.284-291
    • /
    • 2008
  • This study presents an aerodynamic design and numerical analysis of a centrifugal compressor in gas turbines for SOFC-gas turbine hybrid system application. Total-to-total pressure ratio of the compressor is 3.6:1 that could be used widely for small and large SOFC-gas turbine systems. The compressor consists of a centrifugal impeller and a wedge diffuser. Conceptual design and aerodynamic design with mean line analysis and quasi-3D analysis are performed, and aerodynamic parameters as well as design variables are discussed from the design results. A numerical analysis based on the Reynolds-averaged Navier-Stokes equation was performed for the flow analysis of the compressor. The results show that the centrifugal compressor designed meets the design target, and the aerodynamic parameters and results of the compressor can be used for the aerodynamic design of centrifugal compressors and the feasibility study of SOFC-gas turbine system design.

Analysis of Performance of SOFC/GT Hybrid Systems Considering Size-Dependent Performance of Gas Turbines (가스터빈의 규모별 성능차이를 고려한 고체산화물 연료전지/가스터빈 하이브리드 시스템의 성능해석)

  • Myung, No-Sung;Park, Sung-Ku;Kim, Tong-Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.4
    • /
    • pp.399-407
    • /
    • 2011
  • This study analyzes the performance of hybrid power systems combining a solid oxide fuel cell (SOFC) and a gas turbine (GT). Research focus is given to the influence of the size-dependent gas turbine performance on hybrid system performance. Three hybrid systems adopting different gas turbines (kW, sub-MW, multi-MW classes) are designed. As the gas turbine power increases (i.e. as the gas turbine performance enhances), the gas turbine power portion increases and the hybrid system efficiency increases. The hybrid system shows efficiency improvement over the SOFC only system even in the case where the gas turbine net power is nearly zero. The increase of gas turbine pressure ratio contributes to the net hybrid system power output in all of the three cases, while system efficiency is almost independent on the pressure ratio.

Development of 5kW class SOFC power generation system for GT/FC hybrid system (가스터빈/연료전지 하이브리드 시스템용 5kW급 SOFC 발전시스템의 개발)

  • Lim, Tak-Hyoung;Song, Rak-Hyun;Peck, Dong-Hyun;Shin, Dong-Ryul;Yang, Jung-Il;Jeong, Hun;Vinke, I.C.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.73-76
    • /
    • 2006
  • 본 연구에서는 독일 율리히 연구소에서 도입된 면적 200mm*200mm의 연료극 지지체 평판형 SOFC 셀 및 금속 분리판 40장을 적층하여 5kW급 SOFC 스택을 제작하고 연속운전을 수행하여 운전특성을 분석했다. 본 연구를 통해 도입된 5kW급 SOFC 스택은 외국에서 시도된 적이 없는 평판형 SOFC스택의 가압운전을 시도해 보는 것으로서, 스택의 임계압력 특성을 확인하고, 이를 바탕으로 가스터빈-연료전지 하이브리드 시스템에서의 SOFC 스택 가압 운전기술을 확보하는 것이다 이러한 목적을 위해 본 연구에서는 상압형 5kW급 SOFC 스택 운전시스템에 대한 구성과 설계, 전반적인 운전 특성평가 (40셀 스택 운전 열 사이클 시험 연료 전환 $(H_2{\rightarrow}pre-reformed\;gas)$, 1200시간 연속운전 등)가 이뤄졌다.

  • PDF

Off-design Performance Characteristics of SOFC-GT Hybrid System Operating with Syngas Fuel (합성가스를 연료로 사용하는 고체산화물연료전지-가스터빈 하이브리드 시스템의 탈설계점 성능 특성)

  • Choi, Jung-Il;Sohn, Jeong-Lak;Song, Seung-Jin;Kim, Tong-Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.3
    • /
    • pp.269-274
    • /
    • 2010
  • As a preliminary study on a SOFC-GT hybrid system integrated a with coal-gasification system, the influence of the concentrations of $H_2$ and CO in syngas on the performance characteristics of the hybrid system is investigated. It is expected that the differences in the heating values of fuels with different compositions trigger the off-design operation of the gas turbine and result in different performance characteristics of the overall hybrid system. Syngas compositions are found to affect the SOFC performance. Performance of hybrid system with carbon monoxide is poorer than the case with hydrogen. In the case of part-load performance with syngas, performance degradation at part-load operating conditions with hydrogen is more dominant than the case with carbon monoxide.

Performance Analysis of Marine Solid Oxide Fuel Cell and Gas Turbine Hybrid Power System (under Conditions of Turbine Cooling and Constant Temperature in Cathode Inlet) (선박동력용 SOFC/GT 하이브리드시스템의 성능 평가 (터빈 냉각 및 공기극 입구온도 일정 조건을 중심으로))

  • Lim, Tae-Woo;Kil, Byung-Lea;Kim, Jong-Su;Oh, Sae-Gin;Park, Sang-Kyun;Kim, Mann-Eung;Kim, Myoung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1107-1115
    • /
    • 2009
  • The strengthened regulations for atmospheric emissions from ships like MARPOL Annex VI have caused a necessity of new, alternative power system in ships for the low pollutant emissions and the high energy efficiency. This paper attempts to investigate the configuration of SOFC/GT hybrid power system for marine applications like LNG tanker and to analyze the influence of design parameters on the system performance. The simulation results provide the basic data for the design and efficiency improvement of SOFC/GT hybrid system and indicate the guidelines for the safe system operation.

Part-load Performance Characteristics of a Solid Oxide Fuel Cell/Gas Turbine Hybrid Power System Operating with Various Load-following Operation Modes (부하추종 운전방법에 따른 고체산화물 연료전지/가스터빈 하이브리드 동력 시스템의 부분부하 성능특성)

  • Kim Jae-Hoon;Yang Jin-Sik;Ro Sung-Tack;Sohn Jeong-Lak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.3 s.246
    • /
    • pp.193-200
    • /
    • 2006
  • The purpose of this study is to compare the part-load performance of a SOFC/GT hybrid power system with three different kinds of load-following operation modes. The primary mode for the part load operation of a hybrid power system is the reduction of supplied fuel (e.g., fuel control mode) to the hybrid system. The other two options, i.e., variable speed and VIGV controls, are related to the reduction of supplied air simultaneously with the reduction of supplied fuel to the system. With the performance analysis of a SOFC/GT hybrid power system, it is concluded that the variable speed con佐ol mode Provides the best performance for the part-load operations. It is also found that the VIGV control mode, with its better performance behavior than the fuel control mode, can be used as an important option for the part-load operation especially in case that the variable speed control mode can not be adopted.