DOI QR코드

DOI QR Code

Analysis of Performance of SOFC/GT Hybrid Systems Considering Size-Dependent Performance of Gas Turbines

가스터빈의 규모별 성능차이를 고려한 고체산화물 연료전지/가스터빈 하이브리드 시스템의 성능해석

  • Received : 2010.11.10
  • Accepted : 2011.01.14
  • Published : 2011.04.01

Abstract

This study analyzes the performance of hybrid power systems combining a solid oxide fuel cell (SOFC) and a gas turbine (GT). Research focus is given to the influence of the size-dependent gas turbine performance on hybrid system performance. Three hybrid systems adopting different gas turbines (kW, sub-MW, multi-MW classes) are designed. As the gas turbine power increases (i.e. as the gas turbine performance enhances), the gas turbine power portion increases and the hybrid system efficiency increases. The hybrid system shows efficiency improvement over the SOFC only system even in the case where the gas turbine net power is nearly zero. The increase of gas turbine pressure ratio contributes to the net hybrid system power output in all of the three cases, while system efficiency is almost independent on the pressure ratio.

고체산화물 연료전지(SOFC)와 가스터빈을 결합한 하이브리드 발전시스템에서 가스터빈의 규모별 성능차이가 시스템의 성능에 미치는 영향에 대하여 해석하였다. 이를 위해 kW급, MW 이하급, 수 MW급 등 서로 다른 세 가지 가스터빈을 선정하여 사용하였다. 가스터빈이 순 출력을 거의 내지 못하는 kW급 시스템에서도 연료전지 단독 시스템과 비교해 효율이 증가하였으며, 가스터빈의 출력이 커질수록 (즉, 성능이 좋아질수록) 하이브리드 시스템에서 가스터빈이 차지하는 비중이 커지고 시스템의 효율이 높아짐을 확인하였다. 가스터빈의 압력비 증가에 따른 성능 변화를 살펴본 결과 세 가지 하이브리드 시스템에서 모두 출력은 증가하지만, 효율의 변화는 크지 않음을 확인하였다.

Keywords

References

  1. Williams, M. C., Strakey, J. P. and Singhal, S. C., 2004, "U.S Distributed Generation Fuel Cell Program," Journal of Power Sources, Vol. 131, pp. 79-85. https://doi.org/10.1016/j.jpowsour.2004.01.021
  2. Williams, M. C., Strakey, J. P. and Sudoval, W., 2006, "U.S DOE Fossil Energy Fuel Cell Program," Journal of Power Sources, Vol. 159, pp. 1241-1247. https://doi.org/10.1016/j.jpowsour.2005.12.085
  3. Kim, T. S. and Park, S. K., 2009, "Integrated Power Generation System Based on High Temperature Fuel Cells - a Review of Research and Development Status," Trans. of the KSME (B), Vol. 33, No. 5, pp. 299-310.
  4. Singhal, S. C., 2000, "Advances in Solid Oxide Fuel Cell Technology," Solid State Ionics, Vol. 135, pp. 305-313. https://doi.org/10.1016/S0167-2738(00)00452-5
  5. Singhal, S. C., 2002, "Solid Oxide Fuel Cells for Stationary, Mobile, and Military Applications," Solid State Ionics, Vol. 152-153, pp. 405-410.
  6. Park, S. K. and Kim, T. S., 2006, "Comparison between Pressurized Design and Ambient Pressure Design of Hybrid Solid Oxide Fuel Cell-Gas Turbine System," Journal of Power Sources, Vol. 63, pp. 490-499.
  7. Veyo, S. E., Shockling, L. A., Dederer, J. T., Gillett, J. E. and Lundberg, W. L., 2002, "Tubular Solid Oxide Fuel Cell/Gas Turbine Hybrid Cycle Power Systems : Status," Journal of Engineering for Gas Turbines and Power, Vol. 124, pp. 845-849. https://doi.org/10.1115/1.1473148
  8. Agnew, G. D., Bozzolo, M., Moritz, R. R. and Berenyi, S., 2005, "The Design and Integration of the Rolls-Royce Fuel Cell Systems 1MW SOFC," ASME paper GT2005-69122.
  9. Pierre J. F., Office of Fossil Energy Fuel Cell Program FY2007 Annual Report; 2007: 3-5.
  10. Yang, W. J., Kim, T. S. and Kim, J. H., 2004, "Performance Characteristics Analysis of Gas Turbine - Pressurized SOFC Hybrid Systems," Trans. of the SAREK, Vol. 16, No. 7, pp. 615-622.
  11. Yang, W. J., Kim, T. S. and Kim, J. H., 2005, "Comparative Performance Analysis of Pressurized Solid Oxide Fuel Cell/Gas Turbine Hybrid Systems Considering Different Cell Inlet Preheating Methods," Trans. of the KSME (B), Vol. 29, No. 6, pp. 722-729. https://doi.org/10.3795/KSME-B.2005.29.6.722
  12. Song, T. W., Sohn, J. L., Kim, J. H., Kim, T. S., Ro, S. T. and Suzuki, K., 2005, "Performance Analysis of a Tubular Solid Oxide Fuel Cell/Micro Gas Turbine Hybrid Power System Based on a Quasi-Two Dimensional Model," Journal of Power Sources, Vol. 142, pp. 30-42. https://doi.org/10.1016/j.jpowsour.2004.10.011
  13. Yang, W. J., Park, S. K., Kim, T. S., Kim, J. H., Sohn, J. L., and Ro, S. T., 2006, "Design Performance Analysis of Pressurized Solid Oxide Fuel Cell/Gas Turbine Hybrid Systems Considering Temperature Constraints," Journal of Power Sources, Vol. 160, pp. 462-473. https://doi.org/10.1016/j.jpowsour.2006.01.018
  14. Park, S. K., Oh, K. S. and Kim, T. S., 2007, "Analysis of the Design of a Pressurized SOFC Hybrid System using a Fixed Gas Turbine Design", Journal of Power Sources, Vol. 170, pp. 130-139. https://doi.org/10.1016/j.jpowsour.2007.03.067
  15. Chan, S. H., Ho, H. K. and Tian, Y., 2002. "Modelling of Simple Hybrid Solid Oxide Fuel Cell and Gas Turbine Power Plant," Journal of Power Sources, Vol. 109, pp. 111-120. https://doi.org/10.1016/S0378-7753(02)00051-4
  16. Chan, S. H., Ho, H. K. and Tian, Y., 2003, "Multi-level Modeling of SOFC-Gas Turbine Hybrid System," International Journal of Hydrogen Energy, Vol. 28, pp. 889-900. https://doi.org/10.1016/S0360-3199(02)00160-X
  17. Lim, T. H., Song, R. H., Shin, D. R., Yang, J. I., Jung, H., Vinke, I. C. and Yang, S. S., 2008, "Operating Characteristics of a 5 kW class Anode-Supported Planar SOFC Stack for a Fuel Cell/Gas Turbine Hybrid System," International Journal of Hydrogen Energy, Vol. 33, pp. 1076-1083.
  18. Magistri, L., Costamagna, P., Massardo, A. F., Rodgers, C. and McDonald, C. F., 2002, "A Hybrid System based on a Personal Turbine (5kW) and a Solid Oxide Fuel Cell Stack : A Flexible and High Efficiency Energy Concept for the Distributed Power Market," Journal of Engineering for Gas Turbines and Power, Vol. 124, pp. 850-857. https://doi.org/10.1115/1.1473825
  19. Lundberg, W. L., Veyo, S. E. and Moeckel, M. D., 2003, "A High-Efficiency Solid Oxide Fuel Cell Hybrid System using the Mercury 50 ATS Gas Turbine," Journal of Engineering for Gas Turbines and Power, Vol. 125, pp.51-58. https://doi.org/10.1115/1.1499727
  20. Song, T. W., Sohn, J. L., Kim, T. S. and Ro, S. T., 2006, "Performance Characteristics of a MW-class SOFC/GT Hybrid System Based on a Commercially Available Gas Turbine," Jorunal of Power Sources, Vol. 158, pp. 361-367. https://doi.org/10.1016/j.jpowsour.2005.09.031
  21. Aspen Technology, HYSYS, ver. 2006.5.
  22. Ribaud, Y., 2004, "Overall Thermodynamic Model of an Ultra Micro Turbine," Journal of Thermal Science, Vol. 13, No. 4, pp. 297-301. https://doi.org/10.1007/s11630-004-0045-0
  23. Lee. J. J., Yoon, S. H., Kim, T. S. and Sohn, J. L., 2007, "Performance Test and Component Characteristics Evaluation of a Micro Gas Turbine," Journal of Mechanical Science and Technology, Vol. 21, No. 1, pp. 141-152. https://doi.org/10.1007/BF03161720

Cited by

  1. Influence of Gas Turbine Performance and Fuel Cell Power Share on the Performance of Solid Oxide Fuel Cell/Gas Turbine Hybrid Systems vol.36, pp.4, 2012, https://doi.org/10.3795/KSME-B.2012.36.4.439
  2. Model Predictive Control for Power and Thermal Management of an Integrated Solid Oxide Fuel Cell and Turbocharger System vol.22, pp.3, 2014, https://doi.org/10.1109/TCST.2013.2271902
  3. Current-based MPC for operating-safety analysis of a reduced-order solid oxide fuel cell system pp.1862-0760, 2018, https://doi.org/10.1007/s11581-018-2654-8