• Title/Summary/Keyword: SOD activity

Search Result 1,921, Processing Time 0.038 seconds

Assessment of Antioxidative Capacity in Relation to Seed Trails of Rice Varieties

  • Song, Hong-Keun;Ahn, Joung-Kuk;Kim, Kwang-Ho;Lee, Sun-Joo;Baek, Jin-Yeong;Chung, Ill-Min
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.6
    • /
    • pp.544-553
    • /
    • 2006
  • In order to assess antioxidant capacity in relation to seed traits of rice (Oryza sativa L.), ninety-six varieties were examined for antioxidative activity of brown rice grain using superoxide dismutase (SOD), 1,1-diphenyl-2-picrylhydrazyl (DPPH), and thiobarbituric acid (TBA) assays. Overall, average total activities measured by the three methods were of very wide range between 64% and 13%. Significant differences were noted depending on the variety and evaluation method. Rice varieties with foreign origin, middle maturity, colored hulls, and colorless awn exhibited statistically significant higher total activity. As for the measurements, total activity was significantly correlated with SOD (r=0.29***), DPPH (r=0.80***) and TBA (r=0.76***). Between the three activities, SOD was not positively correlated with DPPH (r=0.15*), while TBA was significantly correlated with DPPH value (r=0.51***). DPPH (55.20%) and TBA (50.36%) were significantly higher in foreign rice, while SOD activity (44.29%) was significantly higher in domestic rice. However, an average total activity was significantly higher in foreign rice (47.31%) than in domestic rice (35.92%). SOD, DPPH and TBA activities of middle maturity in maturity time were the highest total activity (44.96%) and significantly differed from the other two groups. Total activity was significantly higher in rice with a colorless awn (42.18%) than with a colored awn (35.87%).

Major Fe-Superoxide Dismutase (FeSOD) Activity in Pseudomonas putida is Essential for Survival Under Conditions of Oxidative Stress During Microbial Challenge and Nutrient Limitation

  • Kim, Young-Cheol;Kim, Cheol-Soo;Cho, Baik-Ho;Anderson, Anne-J.
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.859-862
    • /
    • 2004
  • An isolate of Pseudomonas putida has been found to aggressively colonize root tips and induce plant resistance to Fusarium wilt. However, P. putida mutants lacking Fe-superoxide dismutase (SOD) or both FeSOD and MnSOD activities are less competitive in root tip colonization. In the current study, the growth of an FeSOD mutant was found to be more sensitive than that of the wild-type or a MnSOD mutant to oxidative stress imposed by paraquat treatment and culturing with the soil fungus Talaromyces flavus, which generates reactive oxygen species. Also, the loss of culturability with an aging stationary-phase culture was greater for a double SOD mutant than an FeSOD mutant, while no reduction in culturability was observed with the wild-type and a MnSOD mutant under the same protracted stationary-phase conditions. Accordingly, it was concluded that FeSOD activity is the major form of SOD in P. putida and plays an essential role in survival under stress conditions when increased oxidative stress is encountered.

The effect of Cultivated Environments on the Antioxidant Enzyme Activities of Codonopsis lanceolata (생육환경이 더덕(Codonopsis lanceolata)의 향산화효소 활성에 미치는 영향)

  • 정형진
    • Korean Journal of Plant Resources
    • /
    • v.9 no.3
    • /
    • pp.203-210
    • /
    • 1996
  • The activities of the antioxidative enzymes in the roots of Codonopsis lanceolata have been compared depending on the cultivated environments - wildness, cultivate paddy fields and cultivate dry fields - and the parts of the root. In the Codonopsis lanceolata raised in cultivate paddy fields, the activity of SOD was higher in 2 yrs old than 1 yr old, but the activity in 1 yr old was higher than in 2 yrs old for the plants raised in the cultivate dry fields. The specific activity of SOD in wildness plants 86.069unit/mg protein was the highest among plants studied. The tissue distribution of the SOD activity showed differences depending on the enviroment. The highest activity of SOD was shown in the upper part of the root for the cultivate paddy fields, the loewr parts for the cultivate dry fields and middle parts for the wildness. The specific activity of POD was increased with ages of the plants, and that in the wildness was the highest 68 unit/mg protein among the plants studied. The activity of POD in the parts of the roots was shown as middle>lower>upper. The activity of POD in the middle part of the root, rasied in Soebick province was 85 unit/mg protein. The specific activity of CAT was decreased with ages of the plants. The activities of wildness and cultivate paddy fields was similar, but that in cultivate dry fields was lower than others. The tissue distribution in the parts of the roots was upper>lower>middle. The activity of CAT middle part of rasied in the Sebuck area was 5.359 unit/mg protein. The activities antioxidative in the cells cultured in MSID(Murashige and Skoog +2.4-D 1mg/$\iota$) was followings: 1564 for CAT. 30 for POD and 22200 unit/mg protein for SOD. These figures were lower than that in in vivo.

  • PDF

Comparison of enzyme activities of the native and N-terminal 6xHis-tagged Fe supreoxide dismutase from Streptomyces subrutilus P5 (Streptomyces subrutilus P5의 천연 Fe superoxide dismutase와 N-말단 6xHis-태그가 결합된 Fe superoxide dismutase의 활성비교)

  • Park, Joong-ho;Kim, Jae-heon
    • Korean Journal of Microbiology
    • /
    • v.52 no.2
    • /
    • pp.230-235
    • /
    • 2016
  • This study was carried out to analyze the differences in enzyme activity and stability between the native Fe superoxide dismutase (FeSOD) and the 6xHis-tagged superoxide dismutase (6xHis-FeSOD) of Streptomyces subrutilus P5. The optimum pHs for both native FeSOD and 6xHis-FeSOD were 7, while the pH range of the activity was narrower for the 6xHis-FeSOD. The native FeSOD was stable at pH 4-9, but the 6xHis-FeSOD lost its stability at pH > 9. The temperatures of the optimum activities were same for both types of enzymes. However, the heat stability of the 6xHis-FeSOD was clearly decreased; even at $20^{\circ}C$ the enzyme lost the activity after 360 min. In contrast, the native FeSOD was stable after 720 min at below $40^{\circ}C$. $H_2O_2$ inhibition was occurred already at 0.5 mM for the 6xHis-tagged enzyme. Therefore, from the results that the 6xHis-FeSOD retained the enzyme activity at pH 6-7 and $20-40^{\circ}C$, it can be assumed that the protein structure became destabilized under different storage conditions and sensitive to the enzyme inhibitor.

Purification and Characterization of Superoxide Dismutase in Sphingomonas sp. KS 301 (Sphingomonas sp. KS 301의 Superoxide Dismutase 정제 및 특성)

  • Kang, Hee-Jeong;Jeong, Jae-Hoon;Choi, Ji-Hye;Son, Seung-Yeol
    • Korean Journal of Microbiology
    • /
    • v.43 no.2
    • /
    • pp.83-90
    • /
    • 2007
  • Sphingomonas sp. KS 301, which was isolated from oil contaminated soil, was shown to have five different SODs (SODI, II, III, IV, V) which can be separated by DEAE-Sepharose chromatography, and SOD III was finally purified in this study by ammonium sulfate precipitation, DEAE-Sepharose chromatography, Superose 12 gel filtration and Uno-Q1 ion exchange chromatography. The molecular weight of SOD III was 23 kDa as determined by SDS-PAGE and the apparent molecular weight of the native enzyme was estimated to be approximately 71 kDa by Superose-12 gel filtration chromatography. These data suggest that the purified SOD consists of at least two subunits. The specific activity of the SOD III was higher than Mn type or Fe type SOD of Escherichia coli by 5 fold. To determine the type of SOD III, inhibitory effects of $NaN_{3},\;H_{2}O_{2},\;KCN$ were examined. 10 mM $NaN_{3}$ was able to inhibit 56% of the SOD III activity, which indicates that this SOD is Mn type. The optimum pH of the SOD III was 7.0 and the optimum temperature was $20^{\circ}C$. N-terminal amino acid sequence of purified SOD III was most similar to those of Psudomonase ovalis and Vibrio cholerae among bacteria.

Thermostability of Superoxide Dismutase from Cucumber(Cucumis sativa) (오이 추출물에 존재하는 Superoxide Dismutase의 열안정성)

  • 박인식;김은애;김기남;길지은;이민경;김석환;서정식
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.6
    • /
    • pp.1105-1109
    • /
    • 1998
  • The superoxide dismutase(SOD) in peeled pericarp of cucumber was most stable at pH 8.0 and relatively stabe between pH 5.0 and 9.0. The enzyme was stable up to 6$0^{\circ}C$ and retained 12% by heat treatment at 10$0^{\circ}C$ for 5 min. At pH 2.0, the peeled pericarp enzyme activity was decreased to 10% by incubation for 3 hrs. However, the enzyme activity was increased above 25% after incubating the enzyme at pH 7.0 for 6 hrs. Retention of SOD activity in cucumber by various heating methods was also measured. The residual SOD activities of peeled pericarp and whole cucumber was estimated to be 25% and 27% after blanching(2 min), respectively. The skin enzyme retained 53% of its activity after steaming (3 min). When the peeled pericarp enzyme was incubated at 4$^{\circ}C$ for 20 days, the enzyme activity remained about 81%. However, when the enzyme incubated at 3$0^{\circ}C$ for 20 days, the peeled pericarp enzyme activity decreased to 17% of its original activity. The enzyme activity of peeled pericarp cucumber was not changed after exhaustive dialysis for 3 days, which indicated that the SOD activity in cucumber seems to have molecular weight above 12,000.

  • PDF

Deletion of Superoxide Dismutase Gene of Bombyx mori Nuclear Polyhedrosis Virus Affects Viral DNA Replication

  • Wang, Wenbing;Song, Zhixiu;Ji, Ping;Wu, Jun;Zhang, Zhifang;He, Jialu;Wu, Xiangfu
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.9 no.2
    • /
    • pp.225-228
    • /
    • 2004
  • Superoxide dismutase (SOD) is an important enzyme which catalyzes superoxide radicals to hydrogen peroxide. A Cu, Zn sod-like gene was found in Bombyx mori nuclear polyhedrosis virus encoding 151 amino acids. To demonstrate its function, a recombinant virus named dsBmNPV with deleted sod gene was constructed. It was discovered that the sod gene was not essential for viral replication. Studies on growth of budded virus in BmN cells and superoxide dismutase and catalase activities in vivo after dsBmNPV infection showed that the titer of dsBmNPV decreased obviously comparing to wild type BmNPV, the sod gene was effective on genomic DNA replication of baculovirus, the peak of SOD activity of silkworm infected with wt-BmNPV appeared between 36 and 48 hrs post infection, and with dsBmNPV, it did not appear. And the changes of CAT activity after infection were similar to SOD activity.

Antioxidant Activity of Ethyl acetate Fraction of Oat in Caenorhabditis elegans (귀리 Ethyl acetate 분획물의 예쁜 꼬마선충 내의 항산화 효과)

  • Kwon, Kang Mu;Kim, Jun Hyeong;Yang, Jae Heon;Ki, Byeolhui;Hwang, In Hyun;Kim, Dae Keun
    • Korean Journal of Pharmacognosy
    • /
    • v.52 no.4
    • /
    • pp.251-256
    • /
    • 2021
  • Oat, the seeds of Avena sativa L. (Gramineae), is an important dietary staple for people in many countries. Previous studies reported that A. sativa had various pharmacological effects such as anti-inflammatory, antitumor, neurotonic, and antispasmodic activities. In this study, Caenorhabditis elegans model system was used to investigate the antioxidant activity of methanol extract of oat. The ethyl acetate soluble fraction of the oat methanol extract showed the best DPPH radical scavenging activity. The ethyl acetate fraction was measured for the activity of superoxide dismutase (SOD), catalase, and oxidative stress tolerance by using C. elegans along with reactive oxygen species (ROS) level. In addition, to confirm that the regulation of the stress response gene is responsible for the increased stress tolerance of C. elegans treated by the ethyl acetate fraction, SOD-3 expression was measured using GFP-expressing transgenic worm. As a result, the ethyl acetate fraction increased SOD and catalase activities, and decreased ROS accumulation in a dose-dependent manner. In addition, the ethyl acetate fraction-treated CF1553 worm showed higher SOD-3::GFP intensity compared to the control.

Transgenic Tomato Plants That Overexpress Superoxide Dismutase in Fruits (토마토 과실에서 Superoxide Dismutase를 고발현하는 형질전환 식물체)

  • Park, Eun-Jeong;Lee, Haeng-Soon;Kwon, Suk-Yoon;Choi, Kwan-Sam;Kwak, Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.7-13
    • /
    • 2002
  • Superoxide dismutase (SOD) plays an important role in cellular defense against oxidative stress in plants. We have developed transgenic tomato plants overexpressing a cassava SOD in fruits. Three transgenic tomato plants (one from cv. Pink forcer and two from cv. Koko) using a new vector system, ASOp :: . mSOD1/pBI101, harboring ascorbate oxidase promoter (ASOp) expressing dominantly in cucumber fruits, CuZnSOD cDNA (mSOD1) isolated from cultured cells of cassava, and nptll gene as a selectable marker were successfully developed. SOD specific activity (units/mg protein) in transgenic fruits of both cultivars was increased with maturation of the fruits. SOD specific activity of well-mature fruits in transgenic Pink forcer and Koko showed approximately 1.6 and 2.2 times higher than control fruits, respectively. The strength of SOD isoenzyme bands well reflected the SOD activity during the fruit maturation. These results suggested that SOD gene was properly introduced into tomato fruits in a fruit-dominant expression manner by ASO promoter.

Effect of Metals on Anti - Oxidase Activity in Persicaria vulgaris Webb. et Moq. (중금속이 봄여뀌(Persicaria vulgaris Webb. et Moq.)의 항산화효소활성에 미치는 영향)

  • Sung, Mi-Hyang;Jeong, Hyung-Jin;Kim, Kun-Woo;Kwak, Sang-Soo
    • Korean Journal of Weed Science
    • /
    • v.16 no.4
    • /
    • pp.346-353
    • /
    • 1996
  • To study the effects of metal ions on the activities of antioxidative enzymes, the activities of superoxide dismutase(SOD), peroxidase(POD), catalase(CAT) of Persicaria vulgaris has been studied after treating with Cd, Cu, Zn and Al. 1. The activities of SOD in leaf and stem were decreased, but that in root was increased. Among the metal ions studied in this report, Al gave the highest increase in SOD activity in root. 2. The activities of POD after treating with Cd or Cu did not show any significant differences. POD activities after treating with Zn and Al has been decreased, however, that in root showed increased activities after treating with Zn 5,000 ppm or Al 500 ppm. 3. The activity of CAT in leaf was decreased with every metals studied. The CAT activity in root was increased with increased concentration. The root treated with Al showed highest activity. 4. The presence of isozymes after treated metal ions has been studied in gel electrophoresis. The POD treated plant did not show any new isozymes, but the intensity of one of pre-existent band was increased. The SOD treated plant showed the several new isozymes.

  • PDF