• 제목/요약/키워드: SOD (Superoxide dismutase)

검색결과 1,697건 처리시간 0.032초

토마토(Lycopersicon esculentum Mill) 현탁배양세포에서 Superoxide Dismutase 활성 (Superoxide Dismutase Activity in Suspension Cultured Cells of Tomato (Lycopersicon esculentum Mill))

  • 유순희;허경혜;권석윤;이행순;방재욱;곽상수
    • 식물조직배양학회지
    • /
    • 제24권1호
    • /
    • pp.57-61
    • /
    • 1997
  • Superoxide dismutase (SOD) 고생산세포주로 선발된 토마토(Lycopersicun esculentum) 배양세포를 사용하여 현탁배양에 따른 SOD 활성과 isoenzyme변화를 조사하고 토마토 식물체의 것과 비교하였다. 현탁배양은 세포생중량 2 g을 1 mg/L 2,4-D, 30 g/L sucrose를 함유한 MS 배지 50 mL과 함께 mL flask에서 $25^{\circ}C$암상태로 배양(100 rpm)하였다. 세포생장은 계대배양후 20일에 최고점에 도달한 후, 급격히 감소하며 배양 후 23일부터 세포가 검게 변하였다. 세포 단위무게당 SOD활성(unit/g dry cell wt)은 배양 후 23일부터 증가하여 28일째에 최고활성(52,400 unit)을 나타낸 후 급격히 감소하였다. 세포 밖으로 분비되는 extracellular SOD활성은 배양 후 25일에 최고치(27,800 unit/so mL medium)를 나타낸 후 감소하였다. Flask 전체의 SOD활성은 배양 후 25일에 최대치(35,700 unit)를 나타내었으며 extracellular SOD 활성이 약 75%을 차지하였다. 토마토 배양세포에는 4개의 SOD isoenzyme이 존재하며, isoenzyme의 패턴변화는 세포생장에 따른 효소활성의 변화와 일치하였다. 토마토 식물체는 배양세포에 없는 CuZnSOD가 존재하며 배양세포와 식물체 조직사이에는 서로 다른 isoenzyme 패턴이 존재함을 알 수 있었다.

  • PDF

Effect of Copper Ion on Oxygen Damage in Superoxide Dismutase-Deficient Saccharomyces Cerevisiae

  • Lee, Jeong-Ki;Kim, Ji-Myon;Kim, Su-Won;Nam, Doo-Hyun;Yong, Chul-Soon;Huh, Keun
    • Archives of Pharmacal Research
    • /
    • 제19권3호
    • /
    • pp.178-182
    • /
    • 1996
  • Using superoxide dismutase (SOD)-deficient mutants of Saccharomyces cerevisiae, the oxidative stresses induced by 0.1 mM of copper ion $(Cu^{++})$ was studied. In aerobic culture condition, yeasts lacking MnSOD (mitochondrial SOD) showed more significant growth retardation than CuZnSOD (cytoplasmic SOD)-deficient yeasts. However, not so big differences in growth pattern of those mutants compared withwild type were observed under anaerobic condition. It was found that, under aerobic condition, the supplementation of 0.1 mM copper ioh:(Cu") into culture medium caused the remarkable increase of CuZnSOD but not so significant change in MnSOD. It was also observed that catalase activities appeared to be relatively high in the presence of copper ion in spite of the remarkable reduction of glutathion peroxidase in CuZnSOD-deficient yeasts, but the slight increments of catalase and glutathion peroxidase were detected in MnSOD-deficient strains. It implies that the lack of cytoplasmic SOD could be compensated mainly by catalase. However, these phenomena resulted in the significantincrease of cellular lipid peroxides content in CuZnSOD-deficient yeasts and the slight increment of lipid peroxides in MNSOD-deficient cells. In anaerobic cultivation supplementing copper ion, the cellular enzyme activities of catalase and glutathion peroxidase in SOD-deficient yeasts were slightly increased without any significant changes of lipid peroxides in cell membrane. It suggests that a little amount of free radicals generated by copper ion under anaerobic condition could be sufficiently overcome by catalase as well as glutathion peroxidase.dase.

  • PDF

Uniconazole 처리가 양버즘나무의 $SO_2$ 내성증대 및 효소의 활성에 미치는 영향 (Effect of Uniconazole Treatment on Plant Tolerance to $SO_2$ Injury and Enzymatic Activity and Platanus Occidentalis)

  • 조정희;구자형;최종명
    • 한국환경농학회지
    • /
    • 제15권4호
    • /
    • pp.479-487
    • /
    • 1996
  • $SO_2$에 대한 양버즘나무의 내성을 증대시키고자 생장왜화제인 uniconazole을 토양주입하고, 그 내성 기작을 superoxide dismutase와 peroxidase의 역할과 관련하여 조사했던 바 다음과 같은 결과를 얻었다. Uniconazole은 농도가 높아질 수록 간장, 엽면적 및 T/R율(率)을 현저하게 감소시키고, 엽록소 농도와 superoxide dismutase 및 peroxidase활성을 현저하게 증가시켜 $SO_2$ 처리에 의한 가시피해를 유의성있게 경감시켰다. Diethyldithiocarbamate를 엽면살포하였을때, superoxide dismutase와 peroxidase 활성이 현저하게 불활성화되어 $SO_2$ 처리에 의한 가시피해(可視被害)가 증가되었으며 uniconazole 처리에 의해 증대되었던 $SO_2$ 내성은 diethyldithiocabamate 처리에 의하여 다시 감소되었다. 이상과 같이 uniconazole은 식물생장의 왜화(矮化)에 의한 조직의 치밀화 이외에 SOD와 POD의 활성증대를 통해 $SO_2$에 대한 내성을 증대시킨 것으로 판단된다.

  • PDF

Superoxide Dismutase가 배양인체피부멜라닌세포의 산화적 스트레스에 미치는 영향 (Effect of Superoxide Dismutase on Oxidative Stress of Reactive Oxygen Species in Cultured Human Skin Melanocyte)

  • 서영미;김남송
    • 한국산업보건학회지
    • /
    • 제19권3호
    • /
    • pp.261-269
    • /
    • 2009
  • To evaluate the effect of antioxidant on the cytotoxicity induced by oxidative stress of reactive oxygen species (ROS) in cultured human skin melanocytes, colorimeric assay of XTT and tyrosinase activity assay were adopted after human skin melanocytes were preincubated for 2 hours in the media containing various concentrations of superoxide dismutase (SOD) before the treatment of hydrogen peroxide. Light microscopic study was carried out in same cultures. The results of this study were as follows 1. Cell viability of human skin melanocytes was significantly decreased by 30 and $40{\mu}M$ of hydrogen peroxide($H_2O_2$), respectively. 2. XTT50 was determined at $30{\mu}M$ after human skin melanocytes were treated with $10{\sim}40{\mu}M$ of hydrogen peroxide for 6 hours. 3. The cell viability of cultured human skin melanocytes pretreated with SOD was increased than that of cultured human skin melanocytes treated with $H_2O_2$ dose-dependently. 4. In tyrosinase activity of human skin melanocytes, the cell treated with SOD showed brown stain compared with $H_2O_2$ treated cells, dark stain. 5. In light microscopy, cultured human skin melanocytes exposed to $H_2O_2$ showed morphological changes such as the decreased cell number and cytoplasmic processes, compared with control. 6. In light microscopy, cultured human skin melanocytes pretreated with SOD showed the increase of cell number and cytoplasmic processes compared with $H_2O_2-treated$ group. From these results, it is suggested that oxidative stress of ROS such as $H_2O_2$ has cytotoxicity by showing the decreased cell viability, the increased tyrosinase activity and mophological changes of the decreased cell number and cytoplasmic processes. While, antioxidant like SOD was effective in the prevention of oxidative stress-mediated cytotoxicity by the increased cell viability, decreased tyrosinase activity and the protection of degenerative morphological changes in cultured human skin melanocytes.

Transduction of Tat-Superoxide Dismutase into Insulin-producing MIN6N Cells Reduces Streptozotocin-induced Cytotoxicity

  • Choung, In-Soon;Eum, Won-Sik;Li, Ming-Zhen;Sin, Gye-Suk;Kang, Jung-Hoon;Park, Jin-Seu;Choi, Soo-Young;Kwon, Hyeok-Yil
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권3호
    • /
    • pp.163-168
    • /
    • 2003
  • The reactive oxygen species (ROS) are considered to be an important mediator in pancreatic ${\beta}$ cell destruction, thereby triggering the development of insulin-dependent diabetes mellitus. In the present study, HIV-1 Tat-mediated transduction of Cu,Zn-superoxide dismutase (SOD) was investigated to evaluate its protective potential against streptozotocin (STZ)-induced cytotoxicity in insulin-producing MIN6N cells. Tat-SOD fusion protein was successfully delivered into MIN6N cells in a dose-dependent manner and the transduced fusion protein was enzymatically active for 48 h. The STZ induced-cell destruction, superoxide anion radical production, and DNA fragmentation of MIN6N cells were significantly decreased in the cells pretreated with Tat-SOD for 1 h. Furthermore, the transduction of Tat-SOD increased Bcl-2 and heat shock protein 70 (hsp70) expressions in cells exposed to STZ, which might be partly responsible for the effect of Tat-SOD. These results suggest that an increased of free radical scavenging activity by transduction of Tat-SOD enhanced the tolerance of the cell against oxidative stress in STZ-treated MIN6N cells. Therefore, this Tat-SOD transduction technique may provide a new strategy to protect the pancreatic ${\beta}$ cell destruction in ROS-mediated diabetes.

Superoxide Dismutase Activity in Small Mesenteric Arteries Is Downregulated by Angiotensin II but Not by Hypertension

  • Kang, Kyu-Tae;Sullivan, Jennifer C.;Pollock, Jennifer S.
    • Toxicological Research
    • /
    • 제34권4호
    • /
    • pp.363-370
    • /
    • 2018
  • Many studies reported reduced antioxidant capacity in the vasculature under hypertensive conditions. However, little is known about the effects of antihypertensive treatments on the regulation of vascular antioxidant enzymes. Thus, we hypothesized that antihypertensive treatments prevent the reduction of antioxidant enzyme activity and expression in the small vessels of angiotensin II-induced hypertensive rats (ANG). We observed the small mesenteric arteries and small renal vessels of normotensive rats (NORM), ANG, and ANG treated with a triple antihypertensive therapy of reserpine, hydrochlorothiazide, and hydralazine (ANG + TTx). Systolic blood pressure was increased in ANG, which was attenuated by 2 weeks of triple therapy (127, 191, and 143 mmHg for NORM, ANG, and ANG + TTx, respectively; p < 0.05). Total superoxide dismutase (SOD) activity in the small mesenteric arteries of ANG was lower than that of NORM. The protein expression of SOD1 was lower in ANG than in NORM, whereas SOD2 and SOD3 expression was not different between the groups. Reduced SOD activity and SOD1 expression in ANG was not restored in ANG + TTx. Both SOD activity and SOD isoform expression in the small renal vessels of ANG were not different from those of NORM. Interestingly, SOD activity in the small renal vessels was reduced by TTx. Between groups, there was no difference in catalase activity or expression in both the small mesenteric arteries and small renal vessels. In conclusion, SOD activity in the small mesenteric arteries decreased by angiotensin II administration, but not by hypertension, which is caused by decreased SOD1 expression.

노화에 미치는 산소 유리라디칼에 관한 연구동향 (The involvement of oxygen free radicals in the onset of aging)

  • 김정상;나창수;김영곤
    • 한국한의학연구원논문집
    • /
    • 제3권1호
    • /
    • pp.229-239
    • /
    • 1997
  • The superoxide anion radical$(O_2)$ poses a threat to macromocules and cell organelles of the living cells. This toxicity damage to all groups of proteins results in loss of enzyme function concerned with metabolism and ion transport, and peroxidation of unsaturated fatty acids and cholesterol results in a change of permeability characteristics of the membrane, and oxidative of nucleic acids results in genomic damage and thereby cause mutation, potential carcinogenesis and somatic damage that produce cellular aging Superoxide dismutase(SOD) has received substantial attention as a potential therapeutic agent. It has been investigated as a possible agent for the prevention of ontogenesis, the reduction of cytotoxic effect of anticancer drugs, and protection against damage in ischemic tissue. It is suggest that $O_2$ is concerned with cellular aging, thereafter we need to investigate herb that activated to SOD.

  • PDF

글루코오스 산화효소와 수퍼옥사이드 디스뮤타제는 유지의 산화를 억제할 수 있는가? (Could Glucose Oxidase and Superoxide Dismutase Inhibit the Oxidation of Fats and Oils ?)

  • 한대석;이옥숙;안병학;신현경
    • 한국식품과학회지
    • /
    • 제23권4호
    • /
    • pp.517-519
    • /
    • 1991
  • 글루코오스 산화효소와 수피옥사이드 디스뮤타제가 유지의 산화를 억제할 수 있는지 여부를 알아보기 위하여 이들 효소와 기질을 어유에 직접 용해시키고 시료를 vial에 담아 저장하면서 상부공간의 산소함량과 어유의 과산화물값의 변화를 측정하였다. GO 첨가구의 경우 산소의 감소속도는 대조구와 비슷하였으나 과산화물값은 훨씬 낮은 수준이었다. 이러한 결과는 산소의 일부가 GO의 기질로 소모되어 유지의 산화에 공급된 산소가 제한되었기 때문으로 풀이된다. SOD를 첨가하였을 때에도 유지의 산화가 억제되었는데 이는 SOD가 반응성이큰 일중항 산소를 기저상태의 산소로 전환시킬 수 있었기 때문으로 생각된다.

  • PDF

Expression and Characterization of Recombinant Human Cu,Zn-Superoxide Dismutase in Escherichia coli

  • Kang, Jung-Hoon;Choi, Bong-Jin;Kim, Sung-Moon
    • BMB Reports
    • /
    • 제30권1호
    • /
    • pp.60-65
    • /
    • 1997
  • Expression of human Cu.Zn-superoxide dismutase (SOD) with activity comparable to human erythrocyte enzyme was achieved in E. coli B21(DE3) by using the pET-17b expression vector containing a T7 promoter. Recombinant human SOD was found in the cytosol of disrupted bacterial cells and represented > 25% of the total bacterial proteins. The protein produced by the E. coli cells was purified using a combination of ammonium sulfate precipitation, Sephacryl S-100 gel filtration and DEAE-Sephacel ion exchange chromatography. The recombinant Cu,Zn-SOD and human erythrocyte enzyme were compared using dismutation activity, SDS-PAGE and immunoblotting analysis. The mass of the subunits was determined to be 15,809 by using a electrospray mass spectrometer. The copper specific chelator. diethyldithiocarbamate (DOC) reacted with the recombinant Cu,Zn-SOD. At $50{\mu}M$ and $100{\mu}M$ concentrations of DOC, the dismutation activity was not inhibited for one hour but gradually reduced after one hour. This result suggests that the reaction of DOC with the enzyme occurred in two distinct phases (phase I and phase II). During phase I of this reaction, one DOC reacted with the copper center, with retention of the dismutation activity while the second DOC displaced the copper, with a loss of activity in phase II.

  • PDF

Hydroxyl Radical-Generating Function of Horseradish Cu,Zn-Superoxide Dismutase

  • Eum, Won-Sik;Kwon, Oh-Bin;Kang, Jung Hoon
    • BMB Reports
    • /
    • 제31권5호
    • /
    • pp.492-497
    • /
    • 1998
  • Cu,Zn-superoxide dismutase (SOD) was purified from horseradish by using Mono Q and Superose 12 FPLC column chromatography. The native molecular mass of the purified enzyme was approximately 33 kDa, as determined by gel filtration. The subunit molecular weight, as estimated by SDS-PAGE, was 16 kDa. These results indicated that the native enzyme is a homodimer. We investigated the free radical-generating function of horseradish Cu,Zn-SOD by using a chromogen, 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonate) (ABTS) which reacts with ${\cdot}OH$ radicals to form $ABTS^{+{\cdot}}$ The formation of $ABTS^{+{\cdot}}$ was required for both active Cu, Zn-SOD and $H_2O_2$. The optimal pH for the free radical-generating activity of this enzyme was 6.0-8.0, and it retained about $40^{\circ}C$ of its maximum activity when exposed at $40^{\circ}C$ for 15 min. A neutral scavenger, ethanol, inhibited the $ABTS^{+{\cdot}}$ formation by horseradish Cu, Zn-SOD more effectively than that by the mammalian enzyme. These results suggest that the active channel of horseradish enzyme is slightly larger than that of the mammalian enzyme.

  • PDF