• Title/Summary/Keyword: SOD (Sulfur Oxidation Denitrification) Process

Search Result 2, Processing Time 0.014 seconds

Removal of Nitrogen Using by SOD Process in the Industrial Wastewater Containing Fluoride and Nitrogen from the Zirconium Aolly Tubing Production Factory of the Nuclear Industry (원자력산업 지르코늄합금 튜브 생산공장에서 배출되는 불소.질소 함유 폐수의 황산화탈질을 이용한 질소처리)

  • Cho, Nam-Chan;Moon, Jong-Han;Ku, Sang-Hyun;Noh, Jae-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.11
    • /
    • pp.855-859
    • /
    • 2011
  • The main pollutants from zirconium alloy tubing manufacturing process in nuclear industry are nitrate ($NO_3-N$) and fluoride (F-)Nitric acid, and hydrofluoric acid is used for acid pickling. The process for the removal of nitrate and fluoride is composed of 1st chemical coagulation, SOD (Sulfur Oxidation Denitrification) process using sulfur-oxidizing denitrification, and 2nd chemical coagulation. The characteristic of the wastewater treatment is an application of SOD process. The SOD Process is highly received attention because it is significantly different from existing processes for sulfur denitrification. A JSC (JeonTech-Sulfur- Calcium) Pellet is unification of sulfur and alkalinity material. According to result of SOD process in wastewater treatment plant, the removal efficiency of T-N was over 91% and the average concentration of T-N from influent was 147.55 mg T-N/L and that from effluent was 12.72 mg T-N/L. Therefore, SOD process is a useful to remove nitrogen from inorganic industrial wastewater and a new development of microbial activator was shown to be stable for activation of autotrophic bacteria.

A Study on Denitrification by Sulfur-Oxidizing Bacteria for the Industrial Wastewater Contain Fluoride and Nitrogen (불소.질소 함유 폐수의 황산화탈질에 관한 연구)

  • Cho, Nam-Chan;Moon, Jong-Han
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.10
    • /
    • pp.774-781
    • /
    • 2011
  • Nitric acid and hydrofluoric acid are used for acid pickling in zirconium alloy tubing manufacturing process. Nitrate and fluoride in the wastewater were treated by chemical coagulation and SOD (Sulfur Oxidation Denitrification) process. This study is investigated the effect of fluoride concentration and the optimal condition for SOD process. The limited fluoride concentration for SOD process was below 20 mg F-/L. The adjusted pH and alkalinity by NaOH and $NaHCO_3$ was shown to be more effective for removal of nitrate compared with using NaOH. Furthermore, the microbial activator mixed trace elements and ingredient for alkalinity did not only supplement with alkalinity but also enhance the growth and proliferation for sulfur-oxidizing bacteria. As a result, the inorganic industrial wastewater was successfully treated by the microbial activator in SOD process without continuous addition of seed sludge. Finally, SOD process was shown to remove nitrate in industrial wastewater and to contribute the microbial activator for activation of sulfur-oxidizing bacteria.