• Title/Summary/Keyword: SOCS-3

Search Result 50, Processing Time 0.03 seconds

SOCS1 counteracts ROS-mediated survival signals and promotes apoptosis by modulating cell cycle to increase radiosensitivity of colorectal cancer cells

  • Ryu, Ji-Yoon;Oh, Jiyoung;Kim, Su-Min;Kim, Won-Gi;Jeong, Hana;Ahn, Shin-Ae;Kim, Seol-Hee;Jang, Ji-Young;Yoo, Byong Chul;Kim, Chul Woo;Lee, Choong-Eun
    • BMB Reports
    • /
    • v.55 no.4
    • /
    • pp.198-203
    • /
    • 2022
  • As negative regulators of cytokine signaling pathways, suppressors of cytokine signaling (SOCS) proteins have been reported to possess both pro-tumor and anti-tumor functions. Our recent studies have demonstrated suppressive effects of SOCS1 on epithelial to mesenchymal signaling in colorectal cancer cells in response to fractionated ionizing radiation or oxidative stress. The objective of the present study was to determine the radiosensitizing action of SOCS1 as an anti-tumor mechanism in colorectal cancer cell model. In HCT116 cells exposed to ionizing radiation, SOCS1 over-expression shifted cell cycle arrest from G2/M to G1 and promoted radiation-induced apoptosis in a p53-dependent manner with down-regulation of cyclin B and up-regulation of p21. On the other hand, SOCS1 knock-down resulted in a reduced apoptosis with a decrease in G1 arrest. The regulatory action of SOCS1 on the radiation response was mediated by inhibition of radiation-induced Jak3/STAT3 and Erk activities, thereby blocking G1 to S transition. Radiation-induced early ROS signal was responsible for the activation of Jak3/Erk/STAT3 that led to cell survival response. Our data collectively indicate that SOCS1 can promote radiosensitivity of colorectal cancer cells by counteracting ROS-mediated survival signal, thereby blocking cell cycle progression from G1 to S. The resulting increase in G1 arrest with p53 activation then contributes to the promotion of apoptotic response upon radiation. Thus, induction of SOCS1 expression may increase therapeutic efficacy of radiation in tumors with low SOCS1 levels.

Actinomycin D Induces Phosphorylation of STAT3 through Down-Regulation of SOCS3 in Renal Cancer Cells (신장암 세포주에서 actinomycin D에 의한 SOCS3 발현 감소를 통한 STAT3 활성화)

  • Woo, Seon-Min;Park, Eun-Jung;Kwon, Taeg-Kyu
    • Journal of Life Science
    • /
    • v.21 no.1
    • /
    • pp.141-145
    • /
    • 2011
  • Actinomycin D is a natural antibiotic that is used in anti-cancer chemotherapy and is known as a transcription inhibitor. Interestingly, actinomycin D induces phosphorylation of signal transducers and activators of transcription 3 (STAT3) in renal cancer Caki cells. In this study, we examined the molecular mechanism of actinomycin D-induced STAT3 phosphorylation. Treatment with actinomycin D induced phosphorylation of STAT3 (Tyr705) in a dose- and time-dependent manner. However, actinomycin D did not induce phosphorylation of STAT3 (Ser727), STAT1 (Tyr701) and STAT1 (Ser727). Moreover, actinomycin D-induced STAT3 phosphorylation was caused by decreased protein and mRNA levels of SOCS3, but not by JAK2 and SHP-1. In addition, other transcription inhibitor (5,6-dichloro-1-b-D-ribofuranosyl benzimidazole; DRB) also induced phosphorylation of STAT3 (Tyr705). Taken together, the present study demonstrates that transcriptional inhibitors (actinomycin D and DRB) induce phosphorylation of STAT3 (Tyr705) in Caki cells by down-regulation of SOCS3.

miR-19a Promotes Cell Growth and Tumorigenesis through Targeting SOCS1 in Gastric Cancer

  • Qin, Shuang;Ai, Fang;Ji, Wei-Fang;Rao, Wang;Zhang, He-Cheng;Yao, Wen-Jian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.835-840
    • /
    • 2013
  • Accumulating evidence has shown that microRNAs are involved in cancer development and progression. However, it remains unknown about the potential role of miR-19a in the pathogenesis of gastric cancer. Here, we report that suppressor of cytokine signaling 1 (SOCS1) is a novel target of miR-19a in gastric cancer cells and that miR-19a expression is inversely correlated with SOCS1 expression in gastric cancer cells and a subset of gastric cancer tissues. Ectopic expression of miR-19a dramatically promoted proliferation and tumorigenicity of gastric cancer cells both in vitro and in vivo. Moreover, we showed that silencing of SOCS1 promoted cell growth and colony formation resembling that of miR-19a overexpression, whereas re-introduction of SOCS1 (without the 3'-UTR) attenuated the pro-tumorigenic functions. Taken together, our findings suggest that the SOCS1 gene is a direct target of miR-19a, which functions as an oncogenic miRNA in gastric cancer by repressing the expression of tumor suppressor SOCS1.

Expression of Co-stimulatory Molecules and STAT/SOCS Signaling Factors in the Splenocytes of Mice Tolerized against Arthritis by Oral Administration of Type II Collagen (제2형 콜라겐으로 경구관용을 유도한 관절염 모델 마우스의 비장림프구내의 보조자극인자 및 STAT/SOCS 신호전달 인자의 발현 양상조사)

  • Lee, Kang-Eun;Hwang, Sue-Yun;Min, So-Youn;Kim, Ho-Youn
    • IMMUNE NETWORK
    • /
    • v.3 no.3
    • /
    • pp.248-254
    • /
    • 2003
  • Oral administration of antigen has long been used in the induction of immune tolerance in various animal models of autoimmune diseases including rheumatoid arthritis (RA). Alleveation of arthritogenic symptoms has been reported from RA patients who received oral administration of type II collagen (CII) without side effects, however its rather inconsistent therapeutic efficacy and variation among patients calls for more detailed investigation on the mechanism of oral tolerance to be settled as regular treatment for RA. In an attempt to understand the immunogenic processes underpinning tolerance induction by orally administered CII, we analyzed changes in the expression of costimulatory molecules and STAT/SOCS signaling messengers in the mouse model of collagen induced arthritis (CIA). We found thatin the spleen of CIA mice, that has been undergone repeated oral feeding of CII prior to the induction of arthritis, showed increased promortion of CTLA4 expressing lymphocytes than in the spleen of PBS fed control. On the other hand, cells expressing CD28 or ICOS were decreased in the spleen of tolerized mice. Tolerance induction by oral CII administration also enhanced the expression of STAT6 in both RNA and protein level, while not affecting the expression of STAT3. The expression of SOCS3, which hasbeen known to transmit STAT-mediated signals from Th2 type cytokines, remained unchanged in the spleen of tolerized mice. Interestingly transcript of SOCS1, which has been associated with Th1 related pathways, was only visible in the spleen of tolerized but not of control mice, suggesting that as in the case of IL-6 signaling, it may exert a feed back inhibition toward the Th1 type stimulation.

The Effect of Magnolol on UVB-induced Inflammation Damage Control via the Nrf2-SOCS3-Jak2-STAT3 Pathway in Human Dermal Fibroblasts (마그놀롤의 HDF세포에서 Nrf2-SOCS3-Jak2-STAT3에 의한 UVB 유래 염증데미지 조절)

  • Nam, Young sun;Ji, Juree
    • Journal of Life Science
    • /
    • v.30 no.10
    • /
    • pp.867-876
    • /
    • 2020
  • This study investigated the repair of UVB-induced cell damage by magnolol. We performed a drug-repurposing screen, and, in the STAT3 reporter gene assay, magnolol was identified as a suppressor of STAT3 that improves the cell viability of HDF cells. HDF cells treated with IL-6, UVB, and IFNγ showed the highest expression of Jak2 and phosphorylated STAT3 (p-STAT3), and magnolol was able to decrease the expression of Jak2 and p-STAT3 in UVB-induced cells. Moreover, UVB-damaged cell growth increased significantly in correlation with both reactivation and with magnolol in a dose-dependent manner. Compared with AG490 (a Jak2 inhibitor) treatment of UVB-treated HDF cells, cell proliferation increased significantly. We confirmed that AG490 and magnolol reduced TNF-α concentrations, and Western blotting (protein level) showed decreases in Jak2 and p-STAT3 expression in only the magnolol-treated cells. The expression of Jak2, p-STAT3, and SOCS3 also increased only after treatment with magnolol. Cells were treated with magnolol and ML385 (an NRF2 inhibitor), and these secondary metabolites reduced cell proliferation and NRF2 expression. The amount of MMP9 was also increased by cotreatment with magnolol and ML385. Collectively, these results demonstrate the potential of magnolol for repairing cells after UVB-induced damage by regulating the expression of NRF2, SOCS3, Jak2, and STAT3.

Effect of JAK-STAT pathway in regulation of fatty liver hemorrhagic syndrome in chickens

  • Zhu, Yaling;Mao, Huirong;Peng, Gang;Zeng, Qingjie;Wei, Qing;Ruan, Jiming;Huang, Jianzhen
    • Animal Bioscience
    • /
    • v.34 no.1
    • /
    • pp.143-153
    • /
    • 2021
  • Objective: To explore the molecular mechanisms of fatty liver hemorrhagic syndrome (FLHS) in laying hens, an experiment was conducted to reveal the differences in histopathological observation and gene expression between FLHS group and normal group. Methods: We compared the histopathological difference using hematoxylin and eosin staining and proceeded with RNA sequencing of adipose tissue to search differentially expressed genes and enriched biological processes and pathways. Then we validated the mRNA expression levels by real-time polymerase chain reaction and quantified protein levels in the circulation by enzyme-linked immunosorbent assay. Results: We identified 100 differentially expressed transcripts corresponding to 66 genes (DEGs) were identified between FLHS-affected group and normal group. Seven DEGs were significantly enriched in the immune response process and lipid metabolic process, including phospholipase A2 group V, WAP kunitz and netrin domain containing 2, delta 4-desaturase sphingolipid 2, perilipin 3, interleukin-6 (IL-6), ciliary neurotrophic factor (CNTF), and suppressor of cytokine signaling 3 (SOCS3). And these genes could be the targets of immune response and be involved in metabolic homeostasis during the process of FLHS in laying hens. Based on functional categories of the DEGs, we further proposed a model to explain the etiology and pathogenesis of FLHS. IL-6 and SOCS3 mediate inflammatory responses and the satiety hormone of leptin, induce dysfunction of Jak-STAT signaling pathway, leading to insulin resistance and lipid metabolic disorders. Conversely, CNTF may reduce tissue destruction during inflammatory attacks and confer protection from inflammation-induced insulin resistance in FLHS chickens. Conclusion: These findings highlight the therapeutic implications of targeting the JAK-STAT pathway. Inhibition of IL6 and SOCS3 and facilitation of CNTF could serve as a favorable strategy to enhance insulin action and improve glucose homoeostasis, which are of importance for treating obesity-related disorders for chickens.

Hesperidin Improves the IL-6-Mediated Hepatic Insulin Resistance in Hepa-1c1c7 Cells

  • Chae, Byeong Suk;Kim, Dae Keun
    • Natural Product Sciences
    • /
    • v.18 no.4
    • /
    • pp.221-226
    • /
    • 2012
  • Hesperidin (HES) is a bioflavonoid with antioxidant, anti-inflammatory and anti-diabetic properties. IL-6 is well known as a primary proinflammatory cytokine that contributes to impaired insulin signaling in liver. This study was to investigate whether HES improves IL-6-mediated impairment of insulin sensitivity in liver. Hepa-1c1c7 cells were pre-treated with 50 and $100{\mu}M$ HES in complete media for 1 h and then cultured in the presence or absence of IL-6 (20 ng/ml). These results demonstrated that HES restored IL-6-suppressed expression of IRS-1 protein, downregulated IL-6-increased expression of CRP and SOCS-3 mRNA, and inhibited LPS-induced production of IL-6 in Hepa-1c1c7 cells. These findings indicate that HES may ameliorate hepatic insulin resistance via improvement of IL-6-mediated impaired insulin signaling in hepatocytes.

Baicalin Improves the IL-6-Mediated Hepatic Insulin Resistance in Hepa-1c1c7 Cells

  • Chae, Byeong Suk;Oh, Chanho
    • Natural Product Sciences
    • /
    • v.19 no.4
    • /
    • pp.360-365
    • /
    • 2013
  • Baicalin has antioxidant, anti-inflammatory and anti-diabetic properties. IL-6 is a primary proinflammatory cytokine that contributes to impaired insulin signaling in liver. This study was carried out to investigate whether baicalin improves IL-6-mediated insulin resistance in liver. Hepa-1c1c7 cells were pre-treated with 50 and 100 ${\mu}M$ baicalin in complete media for 1 h and then cultured in the presence or absence of IL-6 (20 ng/ml). These results demonstrated that baicalin restored IL-6-suppressed expression of insulin receptor substrate (IRS)-1 protein, downregulated IL-6-increased gene expression of C-reactive protein (CRP) and suppressor of cytokine signaling (SOCS)-3, and inhibited LPS-induced production of IL-6 in Hepa-1c1c7 cells. These findings indicate that baicalin may ameliorate hepatic insulin resistance via improvement of IL-6-mediated impaired insulin signaling in hepatocytes.

Soil Organic Carbon of Soil Series from 2003 to 2010 in Korea

  • Kim, Yoo Hak;Kang, Seong Soo;Kim, Myung Sook;Kong, Myung Suk;Choi, Soon Kun;Oh, Taek Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.623-640
    • /
    • 2013
  • Soil organic carbon (SOC) of soil series is necessary to calculate soil C sequestration due to IPCC default categorized by climate regions and by soil types. The 3,400 thousand data were downloaded from agricultural soil information system and analyzed to get averages of soil order, soil series, and textual family for the three different soil management practices in Korea. The SOC content was $13.3{\pm}5.38g\;kg^{-1}$ in paddy field, $13.7{\pm}7.19g\;kg^{-1}$ in upland field, and $15.2{\pm}8.22g\;kg^{-1}$ in orchard soil, respectively. As SOC in orchard was 10% greater than that in upland, orchard must be managed with applying compost. The SOCs of inceptisols, which was largely distributed in Korea, were $13.6{\pm}5.48g\;kg^{-1}$ in paddy field, $14.1{\pm}7.38g\;kg^{-1}$ in upland field, and $15.3{\pm}8.20g\;kg^{-1}$ in orchard soil, respectively. The SOCs of alfisols were $13.6{\pm}4.96g\;kg^{-1}$ in paddy field, $13.7{\pm}6.99g\;kg^{-1}$ in upland field, and $15.6{\pm}8.59g\;kg^{-1}$ in orchard soil, respectively. The SOCs of entisols were $11.7{\pm}5.16g\;kg^{-1}$ in paddy field, $12.8{\pm}7.05g\;kg^{-1}$ in upland field, and $13.7{\pm}7.81g\;kg^{-1}$ in orchard soil, respectively. The SOCs of ultisols were $12.7{\pm}4.79g\;kg^{-1}$ in paddy field, $12.7{\pm}6.22g\;kg^{-1}$ in upland field, and $16.3{\pm}8.49g\;kg^{-1}$ in orchard soil, respectively. The fact that soils containing greater clay content in textual family had also more SOC content revealed that SOC could be also dependent on some soil properties as well as soil order. Because SOC differences among soil series representing same textual family were greater than those among textual family, SOC differences should be mainly affected by management practices such as compost application.