• Title/Summary/Keyword: SOCS-1

Search Result 55, Processing Time 0.02 seconds

Hypermethylation of Suppressor of Cytokine Signaling 1 in Hepatocellular Carcinoma Patients

  • Saelee, Pensri;Chuensumran, Ubol;Wongkham, Sopit;Chariyalertsak, Sunanta;Tiwawech, Danai;Petmitr, Songsak
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3489-3493
    • /
    • 2012
  • Hepatocellular carcinoma (HCC), the most common primary hepatic tumor, is highly prevalent in the Asia-Pacific region, including Thailand. Many genetic and epigenetic alterations in HCC have been elucidated. The aim of this study was to determine whether aberrant methylation of the suppressor of cytokine signaling 1 gene (SOCS1) occurs in HCCs. Methylation specific-PCR assays were performed to identify the methylation status of SOCS1 in 29 tumors and their corresponding normal liver tissues. An abnormal methylation status was detected in 17 (59%), with a higher prevalence of aberrant SOCS1 methylation significantly correlating with HCC treated without chemotherapy (OR=0.04, 95%CI=0.01-0.31; P=0.001). This study suggests that epigenetic aberrant SOCS1 methylation may be a predictive marker for HCC patients.

Silencing of Suppressor of Cytokine Signaling-3 due to Methylation Results in Phosphorylation of STAT3 in Imatinib Resistant BCR-ABL Positive Chronic Myeloid Leukemia Cells

  • Al-Jamal, Hamid AN;Jusoh, Siti Asmaa Mat;Yong, Ang Cheng;Asan, Jamaruddin Mat;Hassan, Rosline;Johan, Muhammad Farid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4555-4561
    • /
    • 2014
  • Background: Silencing due to methylation of suppressor of cytokine signaling-3 (SOCS-3), a negative regulator gene for the JAK/STAT signaling pathway has been reported to play important roles in leukemogenesis. Imatinib mesylate is a tyrosine kinase inhibitor that specifically targets the BCR-ABL protein and induces hematological remission in patients with chronic myeloid leukemia (CML). Unfortunately, the majority of CML patients treated with imatinib develop resistance under prolonged therapy. We here investigated the methylation profile of SOCS-3 gene and its downstream effects in a BCR-ABL positive CML cells resistant to imatinib. Materials and Methods: BCR-ABL positive CML cells resistant to imatinib (K562-R) were developed by overexposure of K562 cell lines to the drug. Cytotoxicity was determined by MTS assays and $IC_{50}$ values calculated. Apoptosis assays were performed using annexin V-FITC binding assays and analyzed by flow cytometry. Methylation profiles were investigated using methylation specific PCR and sequencing analysis of SOCS-1 and SOCS-3 genes. Gene expression was assessed by quantitative real-time PCR, and protein expression and phosphorylation of STAT1, 2 and 3 were examined by Western blotting. Results: The $IC_{50}$ for imatinib on K562 was 362nM compared to 3,952nM for K562-R (p=0.001). Percentage of apoptotic cells in K562 increased upto 50% by increasing the concentration of imatinib, in contrast to only 20% in K562-R (p<0.001). A change from non-methylation of the SOCS-3 gene in K562 to complete methylation in K562-R was observed. Gene expression revealed down-regulation of both SOCS-1 and SOCS-3 genes in resistant cells. STAT3 was phosphorylated in K562-R but not K562. Conclusions: Development of cells resistant to imatinib is feasible by overexposure of the drug to the cells. Activation of STAT3 protein leads to uncontrolled cell proliferation in imatinib resistant BCR-ABL due to DNA methylation of the SOCS-3 gene. Thus SOCS-3 provides a suitable candidate for mechanisms underlying the development of imatinib resistant in CML patients.

The SOCS-1 -1478CA/del Polymorphism is not Associated with Colorectal Cancer or Age at Onset in Turkish Subjects

  • Hartavi, Mustafa;Kurt, Ender;Oral, Barbaros;Olmez, Omer Fatih;Cubukcu, Erdem;Deligonul, Adem;Avci, Nilufer;Manavoglu, Osman
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7583-7586
    • /
    • 2013
  • Background: Suppressor of cytokine signaling (SOCS)-1 acts as a key regulator of many cytokine signaling pathways and its abnormal expression has been identified in several human malignancies, suggesting potential roles in carcinogenesis. The aim of this study was to investigate any association between the functional SOCS-1 -1478CA>del polymorphism and colorectal cancer (CC) as well as age at onset in a Turkish clinical sample. Materials and Methods: A total of 122 subjects were enrolled in this case-control study (70 CC cases and 52 controls). The SOCS-1 -1478CA>del polymorphism was genotyped using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Results: The odds ratio of the del allele for CC relative to the CA allele was not significantly different between the groups (OR=0.71, 95% CI=0.41-1.22, p=0.27). This result did not change after adjustment for age and sex on multivariable regression analysis (OR=0.84, 95% CI=0.59-1.34, p=0.53). When the SOCS-1 -1478CA>del polymorphism was analyzed among CC patients in relation to the age at disease onset, we found no significant differences between subjects with the del/del, CA/del, and CA/CA genotypes. Conclusions: The results of our study did not point towards a major role of the SOCS-1 -1478CA>del polymorphism in the pathogenesis of CC in Turkish subjects.

Actinomycin D Induces Phosphorylation of STAT3 through Down-Regulation of SOCS3 in Renal Cancer Cells (신장암 세포주에서 actinomycin D에 의한 SOCS3 발현 감소를 통한 STAT3 활성화)

  • Woo, Seon-Min;Park, Eun-Jung;Kwon, Taeg-Kyu
    • Journal of Life Science
    • /
    • v.21 no.1
    • /
    • pp.141-145
    • /
    • 2011
  • Actinomycin D is a natural antibiotic that is used in anti-cancer chemotherapy and is known as a transcription inhibitor. Interestingly, actinomycin D induces phosphorylation of signal transducers and activators of transcription 3 (STAT3) in renal cancer Caki cells. In this study, we examined the molecular mechanism of actinomycin D-induced STAT3 phosphorylation. Treatment with actinomycin D induced phosphorylation of STAT3 (Tyr705) in a dose- and time-dependent manner. However, actinomycin D did not induce phosphorylation of STAT3 (Ser727), STAT1 (Tyr701) and STAT1 (Ser727). Moreover, actinomycin D-induced STAT3 phosphorylation was caused by decreased protein and mRNA levels of SOCS3, but not by JAK2 and SHP-1. In addition, other transcription inhibitor (5,6-dichloro-1-b-D-ribofuranosyl benzimidazole; DRB) also induced phosphorylation of STAT3 (Tyr705). Taken together, the present study demonstrates that transcriptional inhibitors (actinomycin D and DRB) induce phosphorylation of STAT3 (Tyr705) in Caki cells by down-regulation of SOCS3.

Expression of Co-stimulatory Molecules and STAT/SOCS Signaling Factors in the Splenocytes of Mice Tolerized against Arthritis by Oral Administration of Type II Collagen (제2형 콜라겐으로 경구관용을 유도한 관절염 모델 마우스의 비장림프구내의 보조자극인자 및 STAT/SOCS 신호전달 인자의 발현 양상조사)

  • Lee, Kang-Eun;Hwang, Sue-Yun;Min, So-Youn;Kim, Ho-Youn
    • IMMUNE NETWORK
    • /
    • v.3 no.3
    • /
    • pp.248-254
    • /
    • 2003
  • Oral administration of antigen has long been used in the induction of immune tolerance in various animal models of autoimmune diseases including rheumatoid arthritis (RA). Alleveation of arthritogenic symptoms has been reported from RA patients who received oral administration of type II collagen (CII) without side effects, however its rather inconsistent therapeutic efficacy and variation among patients calls for more detailed investigation on the mechanism of oral tolerance to be settled as regular treatment for RA. In an attempt to understand the immunogenic processes underpinning tolerance induction by orally administered CII, we analyzed changes in the expression of costimulatory molecules and STAT/SOCS signaling messengers in the mouse model of collagen induced arthritis (CIA). We found thatin the spleen of CIA mice, that has been undergone repeated oral feeding of CII prior to the induction of arthritis, showed increased promortion of CTLA4 expressing lymphocytes than in the spleen of PBS fed control. On the other hand, cells expressing CD28 or ICOS were decreased in the spleen of tolerized mice. Tolerance induction by oral CII administration also enhanced the expression of STAT6 in both RNA and protein level, while not affecting the expression of STAT3. The expression of SOCS3, which hasbeen known to transmit STAT-mediated signals from Th2 type cytokines, remained unchanged in the spleen of tolerized mice. Interestingly transcript of SOCS1, which has been associated with Th1 related pathways, was only visible in the spleen of tolerized but not of control mice, suggesting that as in the case of IL-6 signaling, it may exert a feed back inhibition toward the Th1 type stimulation.

Hepatitis B virus X protein promotes epithelial-mesenchymal transition of hepatocellular carcinoma cells by regulating SOCS1

  • Kang, Inho;Kim, Ji Ae;Kim, Jinchul;Lee, Ju Hyeon;Kim, Mi-jee;Ahn, Jeong Keun
    • BMB Reports
    • /
    • v.55 no.5
    • /
    • pp.220-225
    • /
    • 2022
  • Hepatocellular carcinoma (HCC), a primary type of liver cancer, is one of the leading causes of cancer related deaths worldwide. HCC patients have poor prognosis due to intrahepatic and extrahepatic metastasis. Hepatitis B virus (HBV) infection is one of the major causes of various liver diseases including HCC. Among HBV gene products, HBV X protein (HBx) plays an important role in the development and metastasis of HCC. However, the mechanism of HCC metastasis induced by HBx has not been elucidated yet. In this study, for the first time, we report that HBx interacts with the suppressor of cytokine signaling 1 (SOCS1) which negatively controls NF-κB by degrading p65, a subunit of NF-κB. NF-κB activates the transcription of factors associated with epithelial-mesenchymal transition (EMT), a crucial cellular process associated with invasiveness and migration of cancer cells. Here, we report that HBx physically binds to SOCS1, subsequently prevents the ubiquitination of p65, activates the transcription of EMT transcription factors and enhance cell migration and invasiveness, suggesting a new mechanism of HBV-associated HCC metastasis.

The Early Induction of Suppressor of Cytokine Signaling 1 and the Downregulation of Toll-like Receptors 7 and 9 Induce Tolerance in Costimulated Macrophages

  • Lee, Hyo-Ji;Kim, Keun-Cheol;Han, Jeong A;Choi, Sun Shim;Jung, Yu-Jin
    • Molecules and Cells
    • /
    • v.38 no.1
    • /
    • pp.26-32
    • /
    • 2015
  • Toll-like receptors (TLR) 7 and 9 transduce a cellular signal through the MyD88-dependent pathway and induce the production of inflammatory mediators against microbial nucleotide components. The repeated stimulation of TLR4 leads to endotoxin tolerance, but the molecular mechanisms of tolerance induced through the costimulation of individual TLR has not yet been established, although endosomal TLRs share signaling pathways with TLR4. In the present study, mouse macrophages were simultaneously stimulated with the TLR7 agonist, gardiquimod (GDQ), and the TLR9 agonist, CpG ODN 1826, to examine the mechanism and effector functions of macrophage tolerance. Compared with individual stimulation, the costimulation of both TLRs reduced the secretion of TNF-${\alpha}$ and IL-6 through the delayed activation of the NF-${\kappa}B$ pathway; notably, IL-10 remained unchanged in costimulated macrophages. This tolerance reflected the early induction of suppressor of cytokine signaling-1 (SOCS-1), according to the detection of elevated TNF-${\alpha}$ secretion and restored NF-${\kappa}B$ signaling in response to the siRNA-mediated abrogation of SOCS-1 signaling. In addition, the restimulation of each TLRs using the same ligand significantly reduced the expression of both TLRs in endosomes. These findings revealed that the costimulation of TLR7 and TLR9 induced macrophage tolerance via SOCS-1, and the restimulation of each receptor or both TLR7 and TLR9 downregulated TLR expression through a negative feedback mechanisms that protects the host from excessive inflammatory responses. Moreover, the insufficient and impaired immune response in chronic viral infection might also reflect the repeated and simultaneous stimulation of those endosomal TLRs.

Hesperidin Improves the IL-6-Mediated Hepatic Insulin Resistance in Hepa-1c1c7 Cells

  • Chae, Byeong Suk;Kim, Dae Keun
    • Natural Product Sciences
    • /
    • v.18 no.4
    • /
    • pp.221-226
    • /
    • 2012
  • Hesperidin (HES) is a bioflavonoid with antioxidant, anti-inflammatory and anti-diabetic properties. IL-6 is well known as a primary proinflammatory cytokine that contributes to impaired insulin signaling in liver. This study was to investigate whether HES improves IL-6-mediated impairment of insulin sensitivity in liver. Hepa-1c1c7 cells were pre-treated with 50 and $100{\mu}M$ HES in complete media for 1 h and then cultured in the presence or absence of IL-6 (20 ng/ml). These results demonstrated that HES restored IL-6-suppressed expression of IRS-1 protein, downregulated IL-6-increased expression of CRP and SOCS-3 mRNA, and inhibited LPS-induced production of IL-6 in Hepa-1c1c7 cells. These findings indicate that HES may ameliorate hepatic insulin resistance via improvement of IL-6-mediated impaired insulin signaling in hepatocytes.

Baicalin Improves the IL-6-Mediated Hepatic Insulin Resistance in Hepa-1c1c7 Cells

  • Chae, Byeong Suk;Oh, Chanho
    • Natural Product Sciences
    • /
    • v.19 no.4
    • /
    • pp.360-365
    • /
    • 2013
  • Baicalin has antioxidant, anti-inflammatory and anti-diabetic properties. IL-6 is a primary proinflammatory cytokine that contributes to impaired insulin signaling in liver. This study was carried out to investigate whether baicalin improves IL-6-mediated insulin resistance in liver. Hepa-1c1c7 cells were pre-treated with 50 and 100 ${\mu}M$ baicalin in complete media for 1 h and then cultured in the presence or absence of IL-6 (20 ng/ml). These results demonstrated that baicalin restored IL-6-suppressed expression of insulin receptor substrate (IRS)-1 protein, downregulated IL-6-increased gene expression of C-reactive protein (CRP) and suppressor of cytokine signaling (SOCS)-3, and inhibited LPS-induced production of IL-6 in Hepa-1c1c7 cells. These findings indicate that baicalin may ameliorate hepatic insulin resistance via improvement of IL-6-mediated impaired insulin signaling in hepatocytes.