정확한 SOC 추정은 배터리 운영 전략을 제시하는 중요한 지표로 많은 연구가 진행되었다. 기존 연구에서 검증을 위해 주로 사용되던 시뮬레이션 방식은 실제 BMS 환경처럼 실시간 SOC를 추정하기 어렵다. 따라서 본 논문에서는 실시간 배터리 SOC 추정이 가능한 임베디드 시스템을 구현하고 검증 과정에서 발생 가능한 문제 분석을 목표로 한다. 2개의 라즈베리파이 보드로 구성된 환경은 Simscape 배터리에서 측정된 데이터로 EKF 기반 SOC 추정을 진행한다. 검증 단계에서는 온도에 따라 달라지는 배터리 특성을 고려하여, 다양한 주변 온도에서 결과를 확인하였다. 또 임베디드 환경에서 발생하는 오프셋 오류와 패킷 손실에 대비하여, 문제 상황에서 SOC 추정 성능을 검증하였다. 이를 통해 안정범위의 5%내의 오차를 갖는 실시간 SOC 추정이 가능한 임베디드 시스템 구현을 위한 전략을 제시한다.
배터리를 사용하고 있는 시스템에서 배터리의 잔존 용량에 대한 정보는 매우 중요하며, 따라서 정확한 SOC(State of Charge)의 추정이 필요하다. 배터리는 노화됨에 따라 전체 사용 가능 용량이 줄어들고 성능이 떨어지는데 이러한 노화의 영향을 고려하지 않는 배터리의 SOC 추정 방법은 추정의 정확도가 떨어지는 단점이 있다. 따라서 본 논문에서는 배터리의 노화 상태를 고려하여 배터리의 SOC를 추정하는 새로운 방법을 제안한다. 제안한 방법에서는 배터리의 전압-SOC 특성 곡선을 Boltzmann 방정식을 사용하여 모델링하고 노화 지표를 정의하며, 노화 지표를 Boltzmann 방정식 모델과 결합하여 SOC를 추정한다. 따라서 제안한 방법은 배터리의 노화 상태를 SOC 추정에 반영하여 노화된 배터리에 대한 정확한 SOC 추정이 가능하다. 또한 새 배터리와 1년 사용한 배터리에 대한 실험과 시뮬레이션을 통하여 제안한 방법의 유효성을 확인한다.
Every autonomous system like a robot needs a power source known as a battery. And proper management of the battery is very important for proper operation. To know State of Charge(SOC) of a battery is the very core of proper battery management. In this paper, the SOC estimation problem is tackled based on the well known Extended Kalman Filter(EKF). Combined the existing battery model is used and then EKF is employed to estimate the SOC. SOC table is constructed by extensive experiment under various conditions and used as a true SOC. To verify the estimation result, extensive experiment is performed with various loads. The comparison result shows the battery estimation problem can be well solved with the technique proposed in this paper. The result of this paper can be used to develop related autonomous system.
For the safe and reliable operation of lithium-ion batteries in electric vehicles or energy storage systems, having accurate information of the battery, such as the state of charge (SOC), is essential. Many different techniques of battery SOC estimation have been developed, such as the Kalman filter. However, when this filter is applied to multiple batteries, it has difficulty maintaining the accuracy of the estimation over all cells owing to the difference in parameter values of each cell. The difference in the parameter of each cell may increase as the operation time accumulates due to aging. In this paper, a novel deep neural network (DNN)-based SOC estimation method for multi-cell application is proposed. In the proposed method, DNN is implemented to determine the nonlinear relationships of the voltage and current at different SOCs and temperatures. In the training, the voltage and current data obtained at different temperatures during charge/discharge cycles are used. After the comprehensive training with the data obtained from the cycle test with a cell, the resulting algorithm is applied to estimate the SOC of other cells. Experimental results show that the mean absolute error of the estimation is 1.213% at 25℃ with the proposed DNN-based SOC estimation method.
In this work, we propose techniques for estimating the SOC of Li-air battery. First, we describe and explain the operation principle of the Li-air battery. Energy density of the Li-air battery was compared with that of the Li-ion battery. The capacity and impedance value of the fully discharged voltage is analyzed, and the OCV value for SOC estimation is measured through the electrochemical characterization of the Li-air battery. Estimation value is obtained by SOC modeling through extended Kaman filter and is compared with the measurement value from the Coulomb counting method. Moreover, the performance of SOC estimation circuit is evaluated.
Sealed flooded lead acid batteries are becoming popular in the industry because of their low cost as compared to their counterparts. State of Charge (SOC) estimation has always been an important factor in battery management systems. For the accurate SOC estimation, open circuit voltage (OCV) hysteresis should be modelled accurately. The hysteresis phenomenon of the sealed flooded lead acid battery is discussed in detail and its ultimate modeling is proposed based on the conventional parallelogram method. The SOC estimation is performed by using Unscented Kalman Filter (UKF) while the parameters of the battery are estimated using Auto Regressive with external input (ARX) method. The validity of the proposed method is verified by the experimental results. The SOC estimation error by the proposed method is less than 3 % all wing the 125hr test.
The SOC estimation method based on Kalman Filter(KF) requires the accurate battery model to express the electrical characteristics of the battery. However, the performance of KF SOC estimator can hardly be improved because of the nonlinear characteristic of the battery. This paper proposes the new KF SOC estimator of Lithium-Polymer Battery(LiPB), which considers the variation of parameters based on the hysteresis effect, the magnitude of SOC, the charging/discharging mode and the on/off load conditions. The proposed SOC estimation method is verified with the PSIM simulation combined the experimental data of the LiPB.
This paper presents a new method for the estimation of State of Charge (SOC) for NiMH batteries. Among the conventional methods to estimate SOC, Coulomb Counting is widely used, but this method is not precise due to error integration. Another method that has been proposed to estimate SOC is by using a measurement of the Open Circuit Voltage (OCV). This method is found to be a precise one for SOC estimation. In NiMH batteries, the hysteresis characteristic of OCV is very strong compared to other type of batteries. Another characteristic of NiMH battery to be considered is that the OCV of a NiMH battery under discharging mode is lower than it is under charging mode. In this paper, the OCV is modeled by a simple method based on a hyperbolic function which well known as Takacs’s model. The OCV model is then used for SOC estimation. Although the model is simple, the error is within 10%.
Lithium-ion batteries are widely used in hybrid and pure electric vehicles. State-of-charge (SOC) estimation is a fundamental issue in vehicle power train control and battery management systems. This study proposes a novel model-based SOC estimation method that applies closed-loop state observer theory and a comprehensive battery model. The state-space model of lithium-ion battery is developed based on a three-order resistor-capacitor equivalent circuit model. The least square algorithm is used to identify model parameters. A multi-state closed-loop state observer is designed to predict the open-circuit voltage (OCV) of a battery based on the battery state-space model. Battery SOC can then be estimated based on the corresponding relationship between battery OCV and SOC. Finally, practical driving tests that use two types of typical driving cycle are performed to verify the proposed SOC estimation method. Test results prove that the proposed estimation method is reasonably accurate and exhibits accuracy in estimating SOC within 2% under different driving cycles.
Lithium rechargeable cells are used in many industrial applications, because they have high energy density and high power density. For an effective use of these lithium cells, it is essential to build a reliable battery management system (BMS). Therefore, the state of charge (SOC) estimation is one of the most important techniques used in the BMS. An appropriate modeling of the battery characteristics and an accurate algorithm to correct the modeling errors in accordance with the simplified model are required for practical SOC estimation. In order to implement these issues, this approach presents the comparative analysis of the SOC estimation performance using equivalent electrical circuit modeling (EECM) and noise suppression technique (NST) in three representative $LiCoO_2/LiFePO_4/LiNiMnCoO_2$ cells extensively applied in electric vehicles (EVs), hybrid electric vehicles (HEVs) and energy storage system (ESS) applications. Depending on the difference between some EECMs according to the number of RC-ladders and NST, the SOC estimation performances based on the extended Kalman filter (EKF) algorithm are compared. Additionally, in order to increase the accuracy of the EECM of the $LiFePO_4$ cell, a minor loop trajectory for proper OCV parameterization is applied to the SOC estimation for the comparison of the performances among the compared to SOC estimation performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.