• Title/Summary/Keyword: SOC Estimation

Search Result 160, Processing Time 0.022 seconds

Real-time EKF-based SOC estimation using an embedded board for Li-ion batteries (임베디드 보드를 사용한 EKF 기반 실시간 배터리 SOC 추정)

  • Lee, Hyuna;Hong, Seonri;Kang, Moses;Sin, Danbi;Beak, Jongbok
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.10-18
    • /
    • 2022
  • Accurate SOC estimation is an important indicator of battery operation strategies, and many studies have been conducted. The simulation method which was mainly used in previous studies, is difficult to conduct real-time SOC estimation like real BMS environment. Therefore, this paper aims to implement a real-time battery SOC estimation embedded system and analyze problems that can arise during the verification process. In environment consisting of two Raspberry Pi boards, SOC estimation with the EKF uses data measured by the Simscape battery model. Considering that the operating characteristics of the battery vary depend on the temperature, the results were analyzed at various ambient temperatures. It was confirmed that accurate SOC estimation was performed even when offset fault and packet loss occurred due to communication or sensing problems. This paper proposes a guide for embedded system strategies that enable real-time SOC estimation with errors within 5%.

Battery State of Charge Estimation Considering the Battery Aging (배터리의 노화 상태를 고려한 배터리 SOC 추정)

  • Lee, Seung-Ho;Park, Min-Kee
    • Journal of IKEEE
    • /
    • v.18 no.3
    • /
    • pp.298-304
    • /
    • 2014
  • Proper operation of the battery powered systems depends on the accuracy of the battery SOC(State of Charge) estimation, therefore it is critical for those systems that SOC is accurately determined. The SOC of the battery is related to the battery aging and the SOC estimation methods without considering the aging of the battery are not accurate. In this paper, a new method that accurately estimate the SOC of the battery is proposed considering the aging of the battery. A mathematical model for the Battery SOC-OCV(Open Circuit Voltage) relationship is presented using Boltzmann equation and aging indicator is defined, and then the SOC is estimated combining the mathematical model and aging indicator. The proposed method takes the aging of the battery into consideration, which leads to an accurate estimation of the SOC. The simulations and experiments show the effectiveness of the proposed method for improving the accuracy of the SOC estimation.

Secondary Battery SOC Estimation Technique for an Autonomous System Based on Extended Kalman Filter (자율이동체를 위한 2차 전지의 확장칼만필터에 기초한 SOC 추정 기법)

  • Jeon, Chang-Wan;Lee, Yu-Mi
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.9
    • /
    • pp.904-908
    • /
    • 2008
  • Every autonomous system like a robot needs a power source known as a battery. And proper management of the battery is very important for proper operation. To know State of Charge(SOC) of a battery is the very core of proper battery management. In this paper, the SOC estimation problem is tackled based on the well known Extended Kalman Filter(EKF). Combined the existing battery model is used and then EKF is employed to estimate the SOC. SOC table is constructed by extensive experiment under various conditions and used as a true SOC. To verify the estimation result, extensive experiment is performed with various loads. The comparison result shows the battery estimation problem can be well solved with the technique proposed in this paper. The result of this paper can be used to develop related autonomous system.

A Novel SOC Estimation Method for Multiple Number of Lithium Batteries Using a Deep Neural Network (딥 뉴럴 네트워크를 이용한 새로운 리튬이온 배터리의 SOC 추정법)

  • Khan, Asad;Ko, Young-Hwi;Choi, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • For the safe and reliable operation of lithium-ion batteries in electric vehicles or energy storage systems, having accurate information of the battery, such as the state of charge (SOC), is essential. Many different techniques of battery SOC estimation have been developed, such as the Kalman filter. However, when this filter is applied to multiple batteries, it has difficulty maintaining the accuracy of the estimation over all cells owing to the difference in parameter values of each cell. The difference in the parameter of each cell may increase as the operation time accumulates due to aging. In this paper, a novel deep neural network (DNN)-based SOC estimation method for multi-cell application is proposed. In the proposed method, DNN is implemented to determine the nonlinear relationships of the voltage and current at different SOCs and temperatures. In the training, the voltage and current data obtained at different temperatures during charge/discharge cycles are used. After the comprehensive training with the data obtained from the cycle test with a cell, the resulting algorithm is applied to estimate the SOC of other cells. Experimental results show that the mean absolute error of the estimation is 1.213% at 25℃ with the proposed DNN-based SOC estimation method.

Electrochemical Analysis and SOC Estimation Techniques by Using Extended Kalman Filter of the Non-aqueous Li-air Battery (비수계 리튬에어 배터리의 전기화학적 분석 및 확장 칼만 필터를 이용한 SOC 추정기법)

  • Yoon, Chang-O;Lee, Pyeong-Yeon;Kim, Jong-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.2
    • /
    • pp.106-111
    • /
    • 2018
  • In this work, we propose techniques for estimating the SOC of Li-air battery. First, we describe and explain the operation principle of the Li-air battery. Energy density of the Li-air battery was compared with that of the Li-ion battery. The capacity and impedance value of the fully discharged voltage is analyzed, and the OCV value for SOC estimation is measured through the electrochemical characterization of the Li-air battery. Estimation value is obtained by SOC modeling through extended Kaman filter and is compared with the measurement value from the Coulomb counting method. Moreover, the performance of SOC estimation circuit is evaluated.

Hysteresis Modeling of the Sealed Flooded Lead Acid Battery for SOC Estimation (SOC 추정을 위한 밀폐형 Flooded 연축전지의 히스테리시스 모델링)

  • Khan, Abdul Basit;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.309-310
    • /
    • 2016
  • Sealed flooded lead acid batteries are becoming popular in the industry because of their low cost as compared to their counterparts. State of Charge (SOC) estimation has always been an important factor in battery management systems. For the accurate SOC estimation, open circuit voltage (OCV) hysteresis should be modelled accurately. The hysteresis phenomenon of the sealed flooded lead acid battery is discussed in detail and its ultimate modeling is proposed based on the conventional parallelogram method. The SOC estimation is performed by using Unscented Kalman Filter (UKF) while the parameters of the battery are estimated using Auto Regressive with external input (ARX) method. The validity of the proposed method is verified by the experimental results. The SOC estimation error by the proposed method is less than 3 % all wing the 125hr test.

  • PDF

A SOC Estimation using Kalman Filter for Lithium-Polymer Battery (칼만 필터를 이용한 리튬-폴리머 배터리의 SOC 추정)

  • Jang, Ki-Wook;Chung, Gyo-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.222-229
    • /
    • 2012
  • The SOC estimation method based on Kalman Filter(KF) requires the accurate battery model to express the electrical characteristics of the battery. However, the performance of KF SOC estimator can hardly be improved because of the nonlinear characteristic of the battery. This paper proposes the new KF SOC estimator of Lithium-Polymer Battery(LiPB), which considers the variation of parameters based on the hysteresis effect, the magnitude of SOC, the charging/discharging mode and the on/off load conditions. The proposed SOC estimation method is verified with the PSIM simulation combined the experimental data of the LiPB.

SOC Estimation Based on OCV for NiMH Batteries Using an Improved Takacs Model

  • Windarko, Novie Ayub;Choi, Jae-Ho
    • Journal of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.181-186
    • /
    • 2010
  • This paper presents a new method for the estimation of State of Charge (SOC) for NiMH batteries. Among the conventional methods to estimate SOC, Coulomb Counting is widely used, but this method is not precise due to error integration. Another method that has been proposed to estimate SOC is by using a measurement of the Open Circuit Voltage (OCV). This method is found to be a precise one for SOC estimation. In NiMH batteries, the hysteresis characteristic of OCV is very strong compared to other type of batteries. Another characteristic of NiMH battery to be considered is that the OCV of a NiMH battery under discharging mode is lower than it is under charging mode. In this paper, the OCV is modeled by a simple method based on a hyperbolic function which well known as Takacs’s model. The OCV model is then used for SOC estimation. Although the model is simple, the error is within 10%.

State-of-charge Estimation for Lithium-ion Batteries Using a Multi-state Closed-loop Observer

  • Zhao, Yulan;Yun, Haitao;Liu, Shude;Jiao, Huirong;Wang, Chengzhen
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.1038-1046
    • /
    • 2014
  • Lithium-ion batteries are widely used in hybrid and pure electric vehicles. State-of-charge (SOC) estimation is a fundamental issue in vehicle power train control and battery management systems. This study proposes a novel model-based SOC estimation method that applies closed-loop state observer theory and a comprehensive battery model. The state-space model of lithium-ion battery is developed based on a three-order resistor-capacitor equivalent circuit model. The least square algorithm is used to identify model parameters. A multi-state closed-loop state observer is designed to predict the open-circuit voltage (OCV) of a battery based on the battery state-space model. Battery SOC can then be estimated based on the corresponding relationship between battery OCV and SOC. Finally, practical driving tests that use two types of typical driving cycle are performed to verify the proposed SOC estimation method. Test results prove that the proposed estimation method is reasonably accurate and exhibits accuracy in estimating SOC within 2% under different driving cycles.

Comparative Analysis of SOC Estimation using EECM and NST in Rechargeable LiCoO2/LiFePO4/LiNiMnCoO2 Cells

  • Lee, Hyun-jun;Park, Joung-hu;Kim, Jonghoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1664-1673
    • /
    • 2016
  • Lithium rechargeable cells are used in many industrial applications, because they have high energy density and high power density. For an effective use of these lithium cells, it is essential to build a reliable battery management system (BMS). Therefore, the state of charge (SOC) estimation is one of the most important techniques used in the BMS. An appropriate modeling of the battery characteristics and an accurate algorithm to correct the modeling errors in accordance with the simplified model are required for practical SOC estimation. In order to implement these issues, this approach presents the comparative analysis of the SOC estimation performance using equivalent electrical circuit modeling (EECM) and noise suppression technique (NST) in three representative $LiCoO_2/LiFePO_4/LiNiMnCoO_2$ cells extensively applied in electric vehicles (EVs), hybrid electric vehicles (HEVs) and energy storage system (ESS) applications. Depending on the difference between some EECMs according to the number of RC-ladders and NST, the SOC estimation performances based on the extended Kalman filter (EKF) algorithm are compared. Additionally, in order to increase the accuracy of the EECM of the $LiFePO_4$ cell, a minor loop trajectory for proper OCV parameterization is applied to the SOC estimation for the comparison of the performances among the compared to SOC estimation performance.