• Title/Summary/Keyword: SOC (Secondary Organic Carbon)

Search Result 6, Processing Time 0.021 seconds

The Characteristics of Secondary Carbonaceous Species within PM10 and PM2.5 in Seoul and Incheon Area (서울과 인천지역 PM10 과 PM2.5 중 2차생성 탄소성분 추정)

  • Park Jin Soo;Kim Shin Do
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.1
    • /
    • pp.131-140
    • /
    • 2005
  • To investigate secondary carbonaceous species within PM$_{10}$ and PM$_{2.5}$ in Seoul urban Metropolitan Area (SMA), Korea. atmospheric particulate matters samples were collected at two sites of SMA at UOS (The University Of Seoul station) sites and IHU (InHa University of Incheon station) during the period of 4 to 14 January and 12 to 22 May, 11 to 15 August 2004, and their characteristics were qualitatively discussed. during January and May and August of 2004. Daily average mass concentration 0.095 mg/㎥ in PM$_{10}$ and 0.053 mg/㎥ in PM$_{2.5}$ for mass respectively. were observed in SMA. The concentrations of carbonaceous species contributed 18.4% and 16.4% of PM$_{2.5}$ and PM$_{10}$ during the sampling period, respectively, of which OC accounted for 68% and 52% more of the total carbon (TC). OC and EC concentrations and their mass percentages were higher in PM$_{2.5}$ than in PM$_{10}$ which could be attributed to generation process. Organic aerosols would constitute up to 38% of PM$_{2.5}$ based on the evaluation of 1.6 for the ratio of OC to organic particulate. Secondary organic carbon (SOC) were estimated to be more than 13% and up to 68% of total OC based on the minimum OC/EC ratio of 1.06/1.11 using least square method. Comparisons of OC and EC with trace elements. As results of carbonaceous species analysis, the dominant factor in view of fine particle (PM$_{10}$/PM$_{2.5}$) is primary emission source such as mobile, fossil fuel combustion etc. during winter time in SMA. But in summer periods, remarkable fine particle increasing factor was secondary organic carbon dependent to photochemical reaction. reaction.n. reaction.

Validation for SOC Estimation from OC and EC concentration in PM2.5 measured at Seoul (서울 대기 중 PM2.5 내 OC와 EC로부터 SOC 추정방법의 비교 평가)

  • Yoo, Ha Young;Kim, Ki Ae;Kim, Yong Pyo;Jung, Chang Hoon;Shin, Hye Jung;Moon, Kwang Ju;Park, Seung Myung;Lee, Ji Yi
    • Particle and aerosol research
    • /
    • v.16 no.1
    • /
    • pp.19-30
    • /
    • 2020
  • The organic carbon in the ambient particulate matter (PM) is divided into primary organic carbon (POC) and secondary organic carbon (SOC) by their formation way. To regulate PM effectively, the estimation of the amount of POC and SOC separately is one of important consideration. Since SOC cannot be measured directly, previous studies have evaluated determination of SOC by the EC tracer method. The EC tracer method is a method of estimating the SOC value from calculating the POC by determining (OC/EC)pri which is the ratio of the measured values of OC and EC from the primary combustion source. In this study, three different ways were applied to OC and EC concentrations in PM2.5 measured at Seoul for determining (OC/EC)pri: 1) the minimum value of OC/EC ratio during the measurement period; 2) regression analysis of OC vs. EC to select the lower 5-20% OC/EC ratio; 3) determining the OC/EC ratio which has lowest correlation coefficient value (R2) between EC and SOC which is reported as minimum R squared method (MRS). Each (OC/EC)pri ratio of three ways are 0.35, 1.22, and 1.77, respectively from the 1 hourly data. We compared the (OC/EC)pri ratio from 1hourly data with 24 hourly data and revealed that (OC/EC)pri estimated from 24 hourly data had twice larger than 1hourly data due to the low time resolution of sampling. We finally confirmed that the most appropriate value of (OC/EC)pri is that calculated by a regression analysis of 1 hourly data and estimated SOC amounts at PM2.5 of the Seoul atmosphere.

Contribution of Biomass Burning and Secondary Organic Carbon to Water Soluble Organic Carbon at a Suburban Site (교외지역 수용성유기탄소 내 식생연소 및 2차 유기탄소에 의한 기여량 연구)

  • Oh, Sea-Ho;Park, Eun-Ha;Yi, Seung-Muk;Shon, Zang-Ho;Park, Kihong;Bae, Min-Suk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.2
    • /
    • pp.259-268
    • /
    • 2018
  • The $PM_{2.5}$ samples were collected for every 6th day during one year at a suburban site in the Namwonsi, Jeollanamdo, Republic of Korea. Samples were analyzed for elemental carbon (EC), organic carbon (OC), and water-soluble organic carbon (WSOC), and levoglucosan. Although the water-soluble fraction of fine particulate OC consistently showed over a year, levoglucosan fraction of WSOC varied considerably from month to month. In this study, non-biomass-burning WSOC ($WSOC_{NBB}$) and biomass-burning $WSOC_{BB}$ were calculated with measurements of organic source tracer, levoglucosan, to better understand the temporal distribution and sources of WSOC. Two methods of predicting the secondary organic carbon from the biomass-burning $WSOC_{BB}$ Method and the EC-tracer Method were compared. Poor correlations between SOC estimated between two methods suggested that the use of the EC tracer method to estimate SOC may be significantly flawed. Direct measurements of levoglucosan and WSOC can provide a reasonable estimate of secondary organic carbon concentrations.

A Study on the Characteristics of Carbonaceous Compounds in PM2.5 Measured in Chuncheon and Seoul (춘천과 서울에서 측정한 PM2.5 내 탄소성분의 농도 특성에 관한 연구)

  • Jung, Jin-Hee;Kim, Sung-Rak;Choi, Bo-Ra;Kim, Kye-Sun;Huh, Jong-Bae;Yi, Seung-Muk;Han, Young-Ji
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.2
    • /
    • pp.141-153
    • /
    • 2009
  • $PM_{2.5}$ samples were collected from December 2005 through November 2007 in two cities including Chuncheon and Seoul in order to investigate the characteristics of carbonaceous aerosol. The average $PM_{2.5}$ concentration in Seoul ($43.2{\mu}g/m^3$) was approximately 1.2 times higher than that measured in Chuncheon ($36.1{\mu}g/m^3$), however there was no statistical difference on $PM_{2.5}$ concentration between those two cities. Backward trajectories were passing through Seoul area before arriving Chuncheon for about half of the samples, and $PM_{2.5}$ largely increased in Chuncheon when back-trajectories originated from Seoul area. Total carbon (TC) was calculated as sum of OC and EC, contributing 20.5% and 29.2% to total $PM_{2.5}$ mass in Chuncheon and Seoul, respectively. The average ratio of secondary organic carbon (SOC) to total OC was 40% at both sites, and the highest SOC concentration was observed in summer probably due to enhanced volatilization of organic species and active photochemical reaction. J value was calculated to determine if acidic condition affected the increase of secondary organic carbon. In both Chuncheon and Seoul SOC/OC ratios were fairly enhanced when J<100% of acidic condition.

Seasonal Characteristics of Organic Carbon and Elemental Carbon in PM2.5 in Daejeon (대전지역 대기 중 PM2.5의 유기탄소와 원소탄소의 계절별 특성 연구)

  • Kim, Hyosun;Jung, Jinsang;Lee, Jinhong;Lee, Sangil
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.1
    • /
    • pp.28-40
    • /
    • 2015
  • To investigate the seasonal variations of carbonaceous aerosol in Daejeon, OC (organic carbon), EC (elemental carbon) and WSOC (water soluble organic carbon) in $PM_{2.5}$ samples collected from March 2012 to February 2013 were analyzed. $PM_{2.5}$ concentrations were estimated by the sum of organic matter ($1.6{\times}OC$), EC, water-soluble ions ($Na^+$, $NH_4{^{+}}$, $K^+$, $Mg^{2+}$, $Ca^{2+}$, $Cl^-$, $SO_4{^{2-}}$, $NO_3{^{-}}$). The estimated $PM_{2.5}$ concentrations were relatively higher in winter ($29.50{\pm}12.04{\mu}g/m^3$) than those in summer ($13.72{\pm}6.92{\mu}g/m^3$). Carbonaceous aerosol ($1.6{\times}OC+EC$) was a significant portion (34~47%) of $PM_{2.5}$ in all season. The seasonally averaged OC and WSOC concentrations were relatively higher in winter ($6.57{\times}3.48{\mu}gC/m^3$ and $4.07{\pm}2.53{\mu}gC/m^3$ respectively), than those in summer ($3.07{\pm}0.8{\mu}gC/m^3$, $1.77{\pm}0.68{\mu}gC/m^3$, respectively). OC was correlated well with WSOC in all season, indicating that they have similar emission sources or formation processes. In summer, both OC and WSOC were weakly correlated with EC and also poorly correlated with a well-known biomass burning tracer, levoglucosan, while WSOC is highly correlated with SOC (secondary organic carbon) and $O_3$. The results suggest that carbonaceous aerosol in summer was highly influenced by secondary formation rather than primary emissions. In contrast, both OC and WSOC in winter were strongly correlated with EC and levoglucosan, indicating that carbonaceous aerosol in winter was closely related to primary source such as biomass burning. The contribution of biomass burning to $PM_{2.5}$ OC and EC, which was estimated using the levoglucosan to OC and EC ratios of potential biomass burning sources, was about $70{\pm}15%$ and $31{\pm}10%$, respectively, in winter. Results from this study clearly show that $PM_{2.5}$ OC has seasonally different chemical characteristics and origins.

Seasonal Variation of PM2.5 Components Observed in an Industrial Area of Chiba Prefecture, Japan

  • Ichikawa, Yujiro;Naito, Suekazu;Ishii, Katsumi;Oohashi, Hideaki
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.1
    • /
    • pp.66-77
    • /
    • 2015
  • In order to survey the seasonal variation of the chemical composition of particulate matter of $2.5{\mu}m$ or less ($PM_{2.5}$), $PM_{2.5}$ was sampled from 8 February 2013 to 31 March 2014 in an industrial area of Chiba Prefecture, Japan. Chemical measurements of the sample included: ionic components ($Na^+$, $NH_4{^+}$, $Ca^{2+}$, $Mg^{2+}$, $K^+$, $Cl^-$, $NO_3{^-}$ and $SO_4{^{2-}}$), carbonaceous components - organic carbon (OC) and elemental carbon (EC), and water-soluble organic carbon (WSOC). Also, secondary organic carbon (SOC) was measured based using the EC tracer method, and char-EC and soot-EC were calculated from the analytical results. The data obtained were interpreted in terms of temporal variation. Of the overall mean value of $PM_{2.5}$ mass concentration obtained during the study period, ionic components, OC and EC accounted for 45.3%, 19.7%, and 8.0%, respectively. $NO_3{^-}$ showed a unique seasonal distribution pattern due to a dependence on temperature and absolute humidity. It was estimated that an approximate temperature of $14^{\circ}C$, and absolute humidity of $7g/m^3$ were critical for the reversible reaction of $NH_4NO_3(p){\leftrightharpoons}NH_3(g)+HNO_3(g)$. The amount of OC and EC contributing to the monthly $PM_{2.5}$ mass concentration was higher in autumn and winter compared to spring and summer. This result could be attributed to the impact of burning biomass, since WSOC and the ratio of char-EC/soot-EC showed a similar pattern during the corresponding period. From the comparison of monthly WSOC/OC values, a maximum ratio of 83% was obtained in August (summer). The WSOC and estimated SOC levels derived from the EC tracer method correlated (R=0.77) in summer. The high occurrence of WSOC during summer was mainly due to the formation of SOC by photochemical reactions. Through long-term observation of $PM_{2.5}$ chemical components, we established that the degree to which the above-mentioned factors influence $PM_{2.5}$ composition, fluctuates with seasonal changes.