• Title/Summary/Keyword: SO2

Search Result 2,434, Processing Time 0.031 seconds

Applicability analysis of carbondioxide conversion capture materials produced by desulfurization gypsum for cement admixture (시멘트 혼합재로서 정유사 탈황석고를 활용하여 제조한 탄산화물의 적용성 분석)

  • Hye-Jin Yu;Young-Jun Lee;Sung-Kwan Seo;Yong-Sik Chu;Woo-Sung Yum
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.2
    • /
    • pp.54-60
    • /
    • 2023
  • In this study, microstructure and basic property analysis of DG (Desulfurization gypsum) and CCMs (Carbondioxide conversion capture materials) made by reacting CO2 with DG were conducted to analyze applicability as a cement admixture. The main crystalline phases of DG were CaO and CaSO4, and CCMs were CaSO4, CaCO3, Ca(OH)2 and CaSO4·H2O. As a result of particle size analysis, the difference in average particle sizes between the two materials was about 7 ㎛. No major heavy metals were detected in the CCMs, and as a result o f TGA, the CO2 decomposition of CCMs was more than twice as high as that of DG. Therefore, it was judged that CCMs could be used as a cement admixture through optimization of manufacturing conditions. As a results of measuring the strength behavior of DG and CCMs mixture ratios, the long-term strength of CCMs-mixed mortar was higher, and this is due to the filler effect of CaCO3 in CCMs.

^1H NMR Relaxation Study of Molecular Motion in the Paraelectric Phase of (NH4)2Cd2(SO4)3 Single Crystals

  • Lim, Ae-Ran;Jung, Won-Ki
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.14 no.1
    • /
    • pp.18-27
    • /
    • 2010
  • The NMR spectrum and spin-lattice relaxation times, $T_1$, of the $^{1}H$ nuclei in $(NH_{4})_{2}Cd_{2}(SO_{4})_{3}$ single crystals were obtained. The two minima in $T_1$ in the paraelectric phase are attributed to the reorientational motions of the $NH_{4}^{+}$ groups. The $^{1}H\;T_1$ of the $(NH_{4})_{2}Cd_{2}(SO_{4})_{3}$ crystals can be described with Bloembergen- Purcell-Pound (BPP) theory. The experimental value of $T_1$ can be expressed in terms of an isotropic correlation time ${\tau}_H$ for molecular motions by using the BPP theory, and determine the role of protons in these processes.

Production of SrCO3 from SrSO4 through the Black Ash Process (Black Ash법을 이용한 SrSO4로부터 SrCO3 제조)

  • Kang, Jungshin;Lee, Jin-Young
    • Resources Recycling
    • /
    • v.30 no.5
    • /
    • pp.49-56
    • /
    • 2021
  • In this study, using strontium sulfate (SrSO4) recovered from magnetite ore in Hongcheon, the Black Ash process was used to produce strontium carbonate (SrCO3). In the carbothermic reaction step, SrSO4 was reacted with carbon (C) at 1273 K under Ar gas atmosphere using a gas-tight quartz reactor to produce strontium sulfide (SrS). Afterward, water leaching of the residues produced from the carbothermic reaction at 353 K and carbonation of the leaching solution using sodium carbonate (Na2CO3) at 298 K were conducted to produce SrCO3. The results of this study demonstrate the feasibility of the production of SrCO3 via the Black Ash process using domestic magnetite ore containing strontium (Sr).

Nanosulfated Silica as a Potential Heterogeneous Catalyst for the Synthesis of Nitrobenzene

  • Khairul Amri;Aan Sabilladin;Remi Ayu Pratika;Ari Sudarmanto;Hilda Ismail;Budhijanto;Mega Fia Lestari;Won-Chun Oh;Karna Wijaya
    • Korean Journal of Materials Research
    • /
    • v.33 no.7
    • /
    • pp.265-272
    • /
    • 2023
  • In this study, the synthesis of nitrobenzene was carried out using sulfated silica catalyst. The study delved into H2SO4/SiO2 as a solid acid catalyst and the effect of its weight variation, as well as the use of a microwave batch reactor in the synthesis of nitrobenzene. SiO2 was prepared using the sol-gel method from TEOS precursor. The formed gel was then refluxed with methanol and calcined at a temperature of 600 ℃. SiO2 with a 200-mesh size was impregnated with 98 % H2SO4 by mixing for 1 h. The resulting 33 % (w/w) H2SO4/SiO2 catalyst was separated by centrifugation, dried, and calcined at 600 ℃. The catalyst was then used as a solid acid catalyst in the synthesis of nitrobenzene. The weights of catalyst used were 0.5; 1; and 1.5 grams. The synthesis of nitrobenzene was carried out with a 1:3 ratio of benzene to nitric acid in a microwave batch reactor at 60 ℃ for 5 h. The resulting nitrobenzene liquid was analyzed using GC-MS to determine the selectivity of the catalyst. Likewise, the use of a microwave batch reactor was found to be appropriate and successful for the synthesis of nitrobenzene. The thermal energy produced by the microwave batch reactor was efficient enough to be used for the nitration reaction. Reactivity and selectivity tests demonstrated that 1 g of H2SO4/SiO2 could generate an average benzene conversion of 40.33 %.

Catalytic and Acidic Properties of TiO2-SiO2 Unmodified and Modified with H2SO4 (TiO2-SiO2 및 H2SO4으로 개질된 TiO2-SiO2의 촉매특성과 산 성질)

  • Sohn, Jong-Rack;Jang, Hyang-Ja
    • Applied Chemistry for Engineering
    • /
    • v.1 no.1
    • /
    • pp.35-43
    • /
    • 1990
  • A series of $TiO_2-SiO_2$catalysts were prepared by coprecipitation from the mixed solution of titanium tetrachloride and sodium silicate. Some of the samples were treated with 1N $H_2SO_4$ and used as modified catalysts. The catalytic activities of modified catalysts were higher than those of unmodified catalysts, and the effect of modification on the catalytic activity was higher for 2 - propanol dehydration than for cumene dealkylation. The catalytic activity of unmodified catalysts was correlated with their acid amount for the above two reactions. As $TiO_2-SiO_2$ catalysts had relatively large amount of weak acid sites and small amount of strong acid sites, the catalytic activity for 2 - propanol dehydration was higher than that for cumene dealkylation. The effect of modification on catalytic activity increased with increasing $TiO_2$content of the catalysts. Actually, $92-TiO_2-SiO_2/SO_4{^2}$had the highest increment in catalytic activity and $10-TiO_2-SiO_2/SO_4{^2}$had the lowest increment for the 2 - propanol dehydration.

  • PDF

Theoretical Study of Acetic Acid-Sulfur Dioxide Complexes (Acetic Acid-Sulfur Dioxide 복합체에 대한 이론 연구)

  • Lee, Sang-Myeong;Sung, Eun-Mo
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.3
    • /
    • pp.209-214
    • /
    • 2015
  • The formation of complexes between SO2 and acetic acid was studied theoretically. The ab initio and DFT calculations were performed with MP2 and B3LYP methods using 6-311++G(d,p), aug-cc-pVDZ and aug-cc-pVTZ basis sets. Six stable complexes were identified, and three stable bidentate complexes, C1, C2 and C3, were formed between SO2 and syn-acetic acid, which is more stable form of acetic acid. Anti-acetic acid also form three complexes, C4, C5 and C6, with SO2. C4 is bidentate and C5, C6 are monodentate complexes, which are less stable. The most stable complex, C1 has S⋯O=C and O⋯H-O interactions, and the S⋯O and O⋯H distances are less than the sum of van der Waals radii. The vibrational frequencies of complexes were calculated and were compared with those of monomers. The frequency shifts after formation of complex were found, and the overall pattern of frequency shifts relative to monomers is similar among the six complexes.

Photocatalytic Degradation of Organic Dyes using CdSe-Mn-C60 Nanocomposites

  • Jiulong Li;Jeong Won Ko;Weon Bae Ko
    • Elastomers and Composites
    • /
    • v.57 no.4
    • /
    • pp.181-187
    • /
    • 2022
  • CdSe-Mn nanocomposites were synthesized using a microwave method with sodium sulfite (Na2SO3), selenium (Se), cadmium sulfate octahydrate (3CdSO4·8H2O), ammonia solution (NH3·H2O), and manganese (II) sulfate monohydrate (MnSO4·H2O). We obtained CdSe-Mn-C60 nanocomposites by calcining CdSe-Mn nanocomposites and fullerene (C60) in an electric furnace at 700 ℃ for 2 h. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy were used to characterize the crystal structures, lattice vibrations, and surface morphologies of the products, respectively. The photocatalytic activities of the CdSe-Mn-C60 nanocomposites were investigated based on the photocatalytic degradations of organic dyes such as BG, MB, MO, and RhB under ultraviolet (UV) irradiation at 254 nm. UV-visible spectrophotometry was used to confirm the degradation process.

Effect of Manganese Sulfate Concentration in Media on Production Speed of Insecticidal Crystal by Bacillus thuringiensis (배지 중 Manganese sulfate 농도가 Bacillus thuringiensis의 곤충독소 생성 시간에 미치는 영향)

  • Ro-Un Lee;Do Gyung Oh;Eun-Sun Jeong;Jung-Beom Kim
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.3
    • /
    • pp.170-175
    • /
    • 2023
  • In this study, the effect of MnSO4 on the insecticidal crystal (IC) produced by Bacillus thuringiensis for a rapid detection medium was analyzed. The strains used included one B. thuringiensis reference (KCTC 1511) and nine wild-type strains. The IC in B. thuringiensis was detected following the method published by the Ministry of Food and Drug Safety in Korea. In the nutrient agar to which 0.005% MnSO4 was added, IC was observed on two of the three plates after 48 hours of incubation and on all three plates after 120 hours. In AK agar, IC was observed on one and two of the three plates after 48 and 96 hours of incubation, respectively. These results indicated that 0.005% MnSO4 nutrient agar is more appropriate than AK agar for production of IC in B. thuringiensis. The effect of various MnSO4 concentrations on IC production was studied after 24 hours of incubation. IC was produced on 1 of the 10 plates with 0.000% MnSO4 nutrient agar, 2 of the 10 plates with 0.001% MnSO4 nutrient agar, and 3 of the 10 plates with 0.002% MnSO4 nutrient agar. IC was not observed for the other nutrient agars containing 0.003%-0.009% MnSO4. These results indicated that nutrient agar with 0.002% MnSO4 led to the most rapid production of IC by B. thuringiensis after 24 hours of incubation. However, the conditions for IC production by B. thuringiensis depended on the incubation conditions and strain activity. Therefore, further studies are needed to verify the effects of 0.002% MnSO4 on the production of IC by various Bacillus thuringiensis strains.

Adsorption of Azocarmine G dye on H2SO4-modified acacia sawdust

  • Celal Duran;Sengul Tugba Ozeken;Aslihan Yilmaz Camoglu;Duygu Ozdes
    • Membrane and Water Treatment
    • /
    • v.15 no.1
    • /
    • pp.41-50
    • /
    • 2024
  • Presence of hazardous dyes in water cause considerable risks to the human health and environment due to their potential toxicity and ecological disruptions. Therefore, in the present research, to suggest an alternative method for the retention of toxic Azocarmine G (ACG) dye from aqueous media, natural and H2SO4-modified acacia sawdust were performed for the first time as low-cost and efficient adsorbents. Based on batch experiments, it was determined that the best conditions for the developed dye retention process were an initial pH of 2.0 and an equilibrium time of 240 min. Analysis of the data using both pseudo-first order and pseudo-second order kinetic models showed that the retention of ACG onto the adsorbents predominantly occurred through chemical adsorption. Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models were employed to provide insights into the interaction between the adsorbate and adsorbent and the mechanism of the adsorption process. Maximum monolayer adsorption capacities of natural and H2SO4-modified acacia sawdust were determined as 28.01 and 64.90 mg g-1, respectively by Langmuir isotherm model. Results of the study clearly indicated that the modification of acacia sawdust with H2SO4 leads to a substantial increase in the adsorption performance of anionic dyes.