Browse > Article
http://dx.doi.org/10.5012/jkcs.2015.59.3.209

Theoretical Study of Acetic Acid-Sulfur Dioxide Complexes  

Lee, Sang-Myeong (Department of Chemical Education, Chungbuk National University.)
Sung, Eun-Mo (Department of Chemical Education, Chungbuk National University.)
Publication Information
Abstract
The formation of complexes between SO2 and acetic acid was studied theoretically. The ab initio and DFT calculations were performed with MP2 and B3LYP methods using 6-311++G(d,p), aug-cc-pVDZ and aug-cc-pVTZ basis sets. Six stable complexes were identified, and three stable bidentate complexes, C1, C2 and C3, were formed between SO2 and syn-acetic acid, which is more stable form of acetic acid. Anti-acetic acid also form three complexes, C4, C5 and C6, with SO2. C4 is bidentate and C5, C6 are monodentate complexes, which are less stable. The most stable complex, C1 has S⋯O=C and O⋯H-O interactions, and the S⋯O and O⋯H distances are less than the sum of van der Waals radii. The vibrational frequencies of complexes were calculated and were compared with those of monomers. The frequency shifts after formation of complex were found, and the overall pattern of frequency shifts relative to monomers is similar among the six complexes.
Keywords
Acetic acid-SO2 complex; SO2-syn-acetic acid complex; SO2-anti-acetic acid complex;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Rennenberg, M.; Brunold, C.; De-Kok, L. J.; Stulen, I., Sulfur Nutrition and Sulfur Assimilation in higher Plants; SPB Academic Publishing: The Hague, 1990; p 111.
2 Maugh II, T. H., Science 1979, 205, 383.   DOI
3 Agrawal, M.; Singha, B.; Rajputa, M.; Marshallb, F.; Bellb, J. N. B., Environ. Pollut. 2003, 126, 323.   DOI
4 Ford, T. A., J. Mol. Struct. 2009, 924, 466.
5 Steudel, R.; Steudel, Y., Eur. J. Inorg. Chem. 2009, 2009, 1393.   DOI
6 Dayton, D. C.; Miller, R. E., J. Phys. Chem. 1990, 94, 6641.   DOI
7 Millar, L. J.; Ford, T. A., J. Mol. Struct. 2005, 744, 195.
8 Cukras, J.; Sadlej, J. THEOCHEM 2007, 819, 41.   DOI
9 Hirabayashi, S.; Ito, F.; Yamada, K. M. T., J. Chem. Phys. 2006, 125, 034508.   DOI
10 Cukras, J.; Sadlej, J., Pol. J. Chem. 2008, 82, 675.
11 Steudel, R.; Steudel, Y., Eur. J. Inorg. Chem. 2007, 2007, 4385.   DOI
12 Eigner, A. A.; Wrass, J. P.; Smith, E. L.; Knutson, C. C.; Phillips, J. A., J. Mol. Struct. 2009, 919, 312.   DOI
13 Oh, J. J.; Hillig, K. W. I.; Kuczkowski, R. L. J. Am. Chem. Soc. 1991, 113, 7480.   DOI
14 Oh, J. J.; Hillig, K. W. I.; Kuczkowski, R. L. Inorg. Chem. 1991, 30, 4583.   DOI
15 Sun, L.; Ioannou, I. I.; Kuczkowski, R. L. Mol. Phys. 1996, 88, 255.   DOI
16 Tachikawa, H.; Abe, S.; Iyama, T., Inorg. Chem. 2001, 40, 1167.   DOI
17 Peebles, S. A.; Sun, L. H.; Ioannou, I. I.; Kuczkowski, R. L. J. Mol. Struct. 1999, 485-486, 211.   DOI
18 Peebles, S. A.; Sun, L. H.; Kuczkowski, R. L. J. Chem. Phys. 1999, 110, 6804.   DOI
19 Ford, T. A., J. Mol. Struct. 2009, 924, 466.
20 Wang, B.; Hou, H., Chem. Phys. Lett. 2005, 410, 235.   DOI
21 Wierzejewska, M.; Mielke, Z.; Wieczorek, R.; Latajka, Z., Chem. Phys. 1998, 228, 17.   DOI
22 Sun, L.; Tan, X. -Q.; Oh, J. J.; Kuczkowski, R. L., J. Chem. Phys. 1995, 103, 6440.   DOI
23 Takakazu, N.; Kentaroh, K.; Nobuyuki, N. J. Phys. Chem. A 1999, 103, 8595.
24 Peebles, R. A.; Kuczkowski, R. L. J. Chem. Phys. 2000, 112, 8839.   DOI
25 Rayon, V. M.; Sordo, J. A., Chem. Phys. Lett. 2001, 341, 575.   DOI
26 Keller, J. W.; Harrod, B. L.; Chowdhury, S. A. J. Phys. Chem. A 2010, 114, 13182.   DOI
27 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision B.03. Gaussian, Inc.: Pittsburgh, PA, 2003.
28 Yang, H.; Wright, N. J.; Gagnon, A. M.; Gerber, R. B., Phys. Chem. Chem. Phys. 2002, 4, 1832.   DOI