• Title/Summary/Keyword: SNUFOAM

Search Result 8, Processing Time 0.025 seconds

Investigation on the wall function implementation for the prediction of ship resistance

  • Park, Sunho;Park, Se Wan;Rhee, Shin Hyung;Lee, Sang Bong;Choi, Jung-Eun;Kang, Seon Hyung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.1
    • /
    • pp.33-46
    • /
    • 2013
  • A computational fluid dynamics (CFD) code, dubbed SNUFOAM, was developed to predict the performance of ship resistance using a CFD tool kit with open source libraries. SNUFOAM is based on a pressure-based cell-centered finite volume method and includes a turbulence model with wall functions. The mesh sensitivity, such as the skewness and aspect ratio, was evaluated for the convergence. Two wall functions were tested to solve the turbulent flow around a ship, and the one without the assumption of the equilibrium state between turbulent production and dissipation in the log law layer was selected. The turbulent flow around a ship simulated using SNUFOAM was compared to that by a commercial CFD code, FLUENT. SNUFOAM showed the nearly same results as FLUENT and proved to be an alternative to commercial CFD codes for the prediction of ship resistance performance.

A STUDY ON WATER ENTRY OF TWO-DIMENSIONAL CROSS-SECTIONAL SHAPE USING SNUFOAM (SNUFOAM을 이용한 2차원 선박단면 형상의 입수 충격에 대한 연구)

  • Jang, D.J.;Choi, Y.M.;Choi, H.K.;Rhee, S.H.
    • Journal of computational fluids engineering
    • /
    • v.21 no.3
    • /
    • pp.55-63
    • /
    • 2016
  • Nowadays, large container ships are continually developed and that's why the bow and stern structural stability problems by slamming become a significant more and more. However, due to the complexity of slamming, it is difficult to consider those problems at the design stage. For this reason, we attempt numerical analysis through SNUFOAM by generating the bow and stern two-dimensional cross-sectional grid in WILS JIP experiment at KRISO. Unlike the conventional method for the computation time saving, by setting the inlet flow conditions referred to the model test, we analyzed the slamming without applying the grid deformation method. As a result, when the stern model, as in the previous studies, it was possible to obtain quantitatively the fluid impulse is close to the experimental results. When the bow model, we can found the change by the position of force sensors which are derived for the bulbous bow and obtained fluid impulse and flow shape at slamming similar to the model test.

CFD Code Development Using Open Source Libraries for Shipbuilding and Marine Engineering Industries (소스공개 라이브러리를 활용한 조선 및 해양 산업용 CFD 코드 개발)

  • Park, Sun-Ho;Rhee, Shin-Hyung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.2
    • /
    • pp.151-157
    • /
    • 2012
  • The present study explored the possibilities of the applications of open source libraries to shipbuilding and marine engineering industries. A computational fluid dynamics (CFD) code, termed SNUFOAM, was developed and tested for turbulent flow around a ship, free surface flow around a hull, cavitating flow, and vortex shedding dynamics around a cylinder. The results using the developed CFD codes were compared against existing experimental data and solution of commercial CFD codes. SNUFOAM showed the nearly same results as commercial CFD codes and proved to be an alternative to commercial CFD codes for shipbuilding and marine engineering industries.

EDISON CFD를 이용한 100 kW 수평축 조류발전 터빈 주위 유동 해석

  • O, Seung-Jin;Nam, Gwon-U
    • Proceeding of EDISON Challenge
    • /
    • 2016.11a
    • /
    • pp.15-18
    • /
    • 2016
  • 본 연구는 조류발전 터빈의 블레이드 형상 최적화 해석 시스템 개발에 대한 사전연구의 일환으로 EDISON CFD의 프로펠러 단독성능 S/W와 SNUFOAM ShipMesh Advanced 자동격자생성기를 이용하여 조류발전 터빈 주위 유동장에 대한 수치해석을 수행하였다. TSR 조건 변화에 따라 수치해석을 수행하고 이에 대한 power, total coefficient를 동일한 조건에서 수행된 실험결과와 비교 검증하여 해석자의 신뢰도를 확인하였다. 또한, 블레이드 전체를 모델링한 full body 해석과 하나의 블레이드만을 모델링한 single body 해석 결과를 비교하여 경제적이면서 정도 높은 터빈 성능해석 프로세스를 제안하였다. 조류발전 터빈의 TSR 조건 변화에 따라 낮은 TSR 조건에서는 국부적 와동발생에 의해 $C_P$가 감소하는 것을 확인하였고 설계 TSR에서 가장 좋은 효율을 보임을 확인하였다. 이를 통해 suction side의 압력 분포, 팁 와동의 강도 등 성능개선을 위한 주요한 설계변수를 식별하였다.

  • PDF

NUMERICAL ANALYSIS OF THE HYDRAULIC CHARACTERISTICS OF ICE-HARBOR TYPE FISHWAY (아이스하버식 어도 내 수리특성에 관한 수치해석연구)

  • Ko, S.H.;Choi, H.K.;Lee, H.B.;Rhee, S.H.
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.15-19
    • /
    • 2015
  • A fishway is a structure on or around artificial and natural barriers, such as dams, locks and waterfalls, to help fishes' natural migration. In this paper, a computational fluid dynamics (CFD) code, termed SNUFOAM is used to analyze vertical hydraulic characteristic of rollway of fishway. Volume-of-fluid (VOF) method was used to handle free-surface. It is important to determine the factors influencing flow characteristics in fishway because fish use directional information from the flow characteristics to navigate through fishway. Fishway was modeled in 2-D and the influence of the stream velocity, slope, and weir height of fishway was tested. In results, the transition Reynolds number was $2{\times}10^5{\sim}3{\times}10^5$.

NUMERICAL DIFFUSION DECREASE OF FREE-SURFACE FLOW ANALYSIS USING SOURCE TERM IN VOLUME FRACTION TRANSPORT EQUATION (볼륨비 이송방정식의 소스항을 이용한 자유수면 유동 해석의 해 확산 감소)

  • Park, Sunho;Rhee, Shin Hyung
    • Journal of computational fluids engineering
    • /
    • v.19 no.1
    • /
    • pp.15-20
    • /
    • 2014
  • Accurate simulation of free-surface wave flows around a ship is very important for better hull-form design. In this paper, a computational fluid dynamics (CFD) code, termed SNUFOAM, which is based on the open source libraries, OpenFOAM, was developed to predict the wave patterns around a ship. Additional anti-diffusion source term for minimizing a numerical diffusion, which was caused by convection differencing scheme, was considered in the volume-fraction transport equation. The influence of the anti-diffusion source term was tested by applying it to free-surface wave flow around the Wigley model ship. In results, the band width of the volume fraction contours between 0.1 to 0.9 at the hull surface was narrowed by considering the anti-diffusion term.

Maneuvering simulation of an X-plane submarine using computational fluid dynamics

  • Cho, Yong Jae;Seok, Woochan;Cheon, Ki-Hyeon;Rhee, Shin Hyung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.843-855
    • /
    • 2020
  • X-plane submarines show better maneuverability as they have much longer span of control plane than that of cross plane submarines. In this study, captive model tests were conducted to evaluate the maneuverability of an X-plane submarine using Computational Fluid Dynamics (CFD) and a mathematical maneuvering model. For CFD analysis, SNUFOAM, CFD software specialized in naval hydrodynamics based on the open-source toolkit, OpenFOAM, was applied. A generic submarine Joubert BB2 was selected as a test model, which was modified by Maritime Research Institute Netherlands (MARIN). Captive model tests including propeller open water, resistance, self-propulsion, static drift, horizontal planar motion mechanism and vertical planar motion mechanism tests were carried out to obtain maneuvering coefficients of the submarine. Maneuvering simulations for turning circle tests were performed using the maneuvering coefficients obtained from the captive model tests. The simulated trajectory showed good agreement with that of free running model tests. From the results, it was proved that CFD simulations can be applicable to obtain reliable maneuvering coefficients for X-plane submarines.

A Study on the Resistance Performance and Flow Pattern of High Speed Planing Hull using CFD (전산유체계산을 통한 고속 활주선의 저항성능 및 유동분포 해석)

  • Park, Kyurin;Kim, Dong Jin;Kim, Sun Young;Rhee, Shin Hyung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.1
    • /
    • pp.23-33
    • /
    • 2019
  • Unmanned Surface Vehicle (USV) is being developed to do maritime survey and maritime surveillance at Korea Research Institute of Ships & Ocean engineering (KRISO). The goal is that USV should be operated at the maximum speed of 45 knots and it should be operated at sea state 4. Therefore the planing hull of USV should be excellent in resistance performance and manoeuvring performance. It is needed to check its performance using Experimental Fluid Dynamics (EFD), Computational Fluid Dynamics (CFD) or analytic method before designing the hull. In this study, resistance performance was analyzed by EFD and CFD. EFD with heave and pitch was performed at high speed towing system in Seoul National University. CFD was performed using SNUFOAM based on openFOAM with dynamic mesh to calculate running attitudes. The results of CFD were compared with EFD results. The results of CFD were resistance, running attitudes and wave height. The flow distribution and pressure distribution were also analyzed. The results of numerical resistance was under estimated than EFD. Even though the results of CFD have a slight limitation, it can be successfully used to estimate the resistance performance of planing hull. In addition it can be used as a supplement for EFD results.