KIPS Transactions on Software and Data Engineering
/
v.3
no.9
/
pp.341-348
/
2014
The advance in web accessibility with dissemination of smart phones gives rise to rapid increment of users on social network platforms. Many research projects are in progress to detect events using Twitter because it has a powerful influence on the dissemination of information with its open networks, and it is the representative service which generates more than 500 million Tweets a day in average; however, existing studies to detect events has been used TFIDF algorithm without any consideration of the various conditions of tweets. In addition, some of them detected predefined events. In this paper, we propose the RTFIDF VT algorithm which is a modified algorithm of TFIDF by reflecting features of Twitter. We also verified the optimal section of TF and DF for detecting events through the experiment. Finally, we suggest a system that extracts result-sets of places and related keywords at the given specific time using the RTFIDF VT algorithm and validated section of TF and DF.
'Video Commerce' has grown significantly, and is in the era of so-called V-commerce 2.0. Based on this background, this study focused on the link and the possibility of creating synergy between V-commerce 2.0 content and MCN, and examined the linkage strategy considering its characteristics. In conclusion, first, V-Commerce has evolved into the age of 2.0, centered on the characteristics of content that are oriented towards fun and sympathy, beyond the 1.0 era. Second, V-commerce 2.0 content has the characteristic of replacing the sharing and recommendation based on the nature of SNS networks as promotion and purchase enhancement. Therefore, competitiveness as 'content' is relatively important before 'commerce'. Third, V-commerce 2.0 and MCN industry have a strong connection with each other in terms of securing core competitiveness and creating a new profit model. In order to create the synergy between V-Commerce 2.0 and MCN, we proposed the use of big data to reinforce V-Commerce 2.0 customized content competitiveness, building of storytelling marketing and branding, and enhancement of live performance and interactive communication.
In recent years, the convergence of IT and IT sightseeing tour has emerged as a fusion of academic disciplines in the future. Convergence study of social data analysis, raising the heat. Social Network Services (SNS) being utilized in many areas of marketing and to apply the case study is also increasing. This study is based u-smart tourist information systems for mobile learning content design. This is the pattern of things in the template library for things to increase the effectiveness of the learning content to mobile learning content to be converted to a. Design of mobile learning content using u-smart things smart phone app (App) and XMI to go through the design process of utilizing the heat. Future through the design process by implementing a mobile learning content to meet information quality tourist information content to create mobile learning content and learning things that can be content to live it up advantage.
Journal of the Korean Institute of Intelligent Systems
/
v.25
no.2
/
pp.180-185
/
2015
As the number of document resources is continuously increasing, automatically extracting keyphrases from a document becomes one of the main issues in recent days. However, most previous works have tried to extract keyphrases from words in documents, so they overlooked latent keyphrases which did not appear in documents. Although latent keyphrases do not appear in documents, they can undertake an important role in text summarization and information retrieval because they implicate meaningful concepts or contents of documents. Also, they cover more than one fourth of the entire keyphrases in the real-world datasets and they can be utilized in short articles such as SNS which rarely have explicit keyphrases. In this paper, we propose a new approach that selects candidate keyphrases from the keyphrases of neighbor documents which are similar to the given document and evaluates the importance of the candidates with the individual words in the candidates. Experiment result shows that latent keyphrases can be extracted at a reasonable level.
우리는 지금 스마트 사회에 살아가고 있다. 언제 어디서든 스마트 디바이스를 통해 기존에 PC에서 하던 작업들을 손쉽게 하고 있다. 한편 스마트폰의 확산으로 이용자 수가 급증하고 있는 소셜네트워크 서비스(SNS)는 이용자들이 자신의 일상적인 이야기를 사이버공간에 게시함으로 인해 개인의 사생활 정보들이 노출되고, 그러한 정보들이 범죄에 악용되는 사례들이 눈에 띄게 증가하고 있다. 또한 SNS를 이용한 악성코드의 유포 및 빠른 전파 등도 새로운 보안위협으로 나타나고 있다. 그 밖에 스마트 기기를 대상으로 한 해킹 및 악성코드 감염 등 위협이 증가하고 있는 형편이다. 본고에서는 스마트 사회의 주요 보안위협을 살펴보고 미국, 유럽, 일본, 호주 등 선진국의 관련 정책 동향과 국내 정책과 실태를 분석하여 새로운 정보보호 정책 수립 방향을 제언하고자 한다. 스마트 사회 위험 요소로 가장 보편적으로 사용되고 있는 스마트폰과 스마트폰을 통해 이용되고 있는 소셜네트워크 서비스, 클라우드 서비스의 보안위협을 제기하고 최근 글로벌 이슈로 떠오르고 있는 빅 데이터 환경의 보안위협을 분석하였다. 스마트 사회의 위협을 대비하고 있는 주요국 정책을 살펴보면, 미국의 경우 사회적 합의를 바탕으로한 감시와 통제를 강화하는 정책을 추진 중에 있으며 유럽의 5개국 EU5(영국, 독일, 프랑스, 스페인, 이탈리아)는 스마트폰 위협을 중심으로 공동 대응 방안을 마련하고 있다. 일본은 스마트 워크중심의 보안대책을 강구하고 있으며 호주는 스마트 사회 보안위협에 대한 국민의 인식제고에 주력하고 있다. 국내의 경우도 스마트 사회의 보안위협에 선제적 대응을 위하여 "스마트 모바일 시큐리티 종합계획"을 수립하여 추진중에 있다. 하지만 보안 실태를 보면 스마트 사회 보안위협에 대한 이용자들의 우려는 높은 반면 기업의 보안 대책 마련에 대한 투자는 여전히 미흡한 상황이다. 향후 우리 사회가 디바이스간 융합을 넘어 모든 사물이 연결되는 초(超)연결(Hyper-Connectivity) 시대로 진화되어 가면 편리성이 증대되는 만큼 더 많은 위협에 우리의 일상이 노출되는 문제가 발생하게 될 것이다. 안전한 미래 사회로 진입하기 위해서는 보다 체계적이고 종합적인 정보보호 정책마련이 필요하다. 본고에서는 이를 위한 정책수립의 방향을 제언했다.
Journal of the Institute of Convergence Signal Processing
/
v.20
no.1
/
pp.31-36
/
2019
A chatbot is an important area of mobile service, which understands informal data of a user as a conversational form and provides a customized service information for user. However, there is still a lack of a service way to fully understand the user's natural language typed query dialogue. Therefore, in this paper, we extract meaningful words, such a region, a food category, and a restaurant name from user's dialogue sentences for recommending a restaurant. and by comparing the extracted words against the contents of the knowledge database that is built from the hashtag for recommending a restaurant in SNS, and provides user target information having statistically much the word-similarity. In order to evaluate the performance of the restaurant recommendation chatbot system implemented in this paper, we measured the accessibility of various user query information by constructing a web-based mobile environment. As a results by comparing a previous similar system, our chabot is reduced by 37.2% and 73.3% with respect to the touch-count and the cutaway-count respectively.
Journal of the Korea Society of Computer and Information
/
v.26
no.4
/
pp.231-237
/
2021
Over a decade ago, Krasnova et al. identified the factors that influence Facebook users' self-disclosure. These factors include perceived risks, relationship building, relationship maintenance, self-presentation, and enjoyment. Meanwhile, during the past 10 years, there have been significant changes in terms of function, media, and competition. SNSs have been functionally enhanced, used in mobile environment, and had many competitors. Based on these facts, it is believed that the influence of the factors on self-disclosure is different from those of Krasnova et al. The purpose of this study is to verify through a replication study whether the factors adopted in the study of Krasnova et al. are still important in explaining self-exposure. The study empirically find the result significantly different from those of Krasnova et al. Based on the result, the study provides meaningful implications and suggestions for future research.
Recently, there are increasing attempts to utilize deep learning methodology in the fashion industry. Accordingly, research dealing with various fashion-related problems have been proposed, and superior performances have been achieved. However, the studies for fashion style classification have not reflected the characteristics of the fashion style that one outfit can include multiple styles simultaneously. Therefore, we aim to solve the multi-label classification problem by utilizing the dependencies between the styles. A multi-label recognition model based on a graph convolution network is applied to detect and explore fashion styles' dependencies. Furthermore, we accelerate model training and improve the model's performance through transfer learning. The proposed model was verified by a dataset collected from social network services and outperformed baselines.
Kim, Mi-Jin;Park, Sung-Hoon;Kim, Yu-Na;Lee, Hae-Chan;Yeo, Gi-Tae
Journal of Digital Convergence
/
v.19
no.2
/
pp.117-133
/
2021
This study aimed to identify its research trends using social network analysis(SNA). The results of the analysis showed that, for degree centrality, Busan Port(0.223) was the keyword that had the highest centrality, followed by DEA(0.060), AHP(0.056), and container terminal and port competitiveness(0.049). Busan Port(0.245) also had the highest betweenness centrality, followed by DEA(0.048), container terminal(0.044), AHP(0.039), and Busan New Port(0.032). The trend analysis inferred that efficiency analysis(DEA), strategy selection, and competition analysis(AHP) were the keywords with a high centrality for Busan Port to gain a competitive edge with global ports. However, research on the Fourth Industrial Revolution, which is emerging as a key issue, was insufficient. In the future, research using social data, such as mass media and social networks, is necessary.
Kim, Ji Won;Park, Sang Min;Park, Sungho;Jeong, Harim;Yun, Ilsoo
Journal of Information Technology Services
/
v.19
no.6
/
pp.1-13
/
2020
Recently, 80% of big data consists of unstructured text data. In particular, various types of documents are stored in the form of large-scale unstructured documents through social network services (SNS), blogs, news, etc., and the importance of unstructured data is highlighted. As the possibility of using unstructured data increases, various analysis techniques such as text mining have recently appeared. Therefore, in this study, topic modeling technique was applied to the Korea Highway Corporation's voice of customer (VOC) data that includes customer opinions and complaints. Currently, VOC data is divided into the business areas of Korea Expressway Corporation. However, the classified categories are often not accurate, and the ambiguous ones are classified as "other". Therefore, in order to use VOC data for efficient service improvement and the like, a more systematic and efficient classification method of VOC data is required. To this end, this study proposed two approaches, including method using only the latent dirichlet allocation (LDA), the most representative topic modeling technique, and a new method combining the LDA and the word embedding technique, Word2vec. As a result, it was confirmed that the categories of VOC data are relatively well classified when using the new method. Through these results, it is judged that it will be possible to derive the implications of the Korea Expressway Corporation and utilize it for service improvement.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.