• Title/Summary/Keyword: SNPs, single-nucleotide polymorphism

Search Result 420, Processing Time 0.019 seconds

Single Nucleotide Polymorphisms[SNPs] of DNA repair genes; hMLH1, hMSH2 and ATM in Healthy Korean (한국인에서의 DNA repair gene[hMLH1, hMSH2 및 ATM]의 Single Nucleotide Polymorphisms[SNPs]의 빈도)

  • 정현숙;김태연;조윤희;김양지;정해원
    • Environmental Mutagens and Carcinogens
    • /
    • v.23 no.1
    • /
    • pp.16-22
    • /
    • 2003
  • Single nucleotide polymorphisms (SNPs) are alterations in DNA base that occur most frequently throughout the human genome. The SNPs of DNA repair genes, hMLH1, hMSH2 and ATM, among 100 Korean people were analyzed using Dynamic Allele specific Hybridization (DASH) techniques. Mutation at the position of exon 38 (GA) and exon 10 (CG) of ATM gene, mutation at the position of exon 8 (AG), and exon 1 (AG) of hMLH1 gene and exon 14 (AG) of hMSH2 gene were investigated. No mutation at the selected position of ATM gene and hMSH1 gene was found. However, while there was no mutation at the position of exon of hMSH2 gene, mutation was found at the promotion region (CT) with the frequency of 24% CC, 36% CT and 62% TT genotyes. This results might be used as baseline data for research on SNP of Korean population.

  • PDF

A Genome Wide Association Study on Age at First Calving Using High Density Single Nucleotide Polymorphism Chips in Hanwoo (Bos taurus coreanae)

  • Hyeong, K.E.;Iqbal, A.;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.10
    • /
    • pp.1406-1410
    • /
    • 2014
  • Age at first calving is an important trait for achieving earlier reproductive performance. To detect quantitative trait loci (QTL) for reproductive traits, a genome wide association study was conducted on the 96 Hanwoo cows that were born between 2008 and 2010 from 13 sires in a local farm (Juk-Am Hanwoo farm, Suncheon, Korea) and genotyped with the Illumina 50K bovine single nucleotide polymorphism (SNP) chips. Phenotypes were regressed on additive and dominance effects for each SNP using a simple linear regression model after the effects of birth-year-month and polygenes were considered. A forward regression procedure was applied to determine the best set of SNPs for age at first calving. A total of 15 QTL were detected at the comparison-wise 0.001 level. Two QTL with strong statistical evidence were found at 128.9 Mb and 111.1 Mb on bovine chromosomes (BTA) 2 and 7, respectively, each of which accounted for 22% of the phenotypic variance. Also, five significant SNPs were detected on BTAs 10, 16, 20, 26, and 29. Multiple QTL were found on BTAs 1, 2, 7, and 14. The significant QTLs may be applied via marker assisted selection to increase rate of genetic gain for the trait, after validation tests in other Hanwoo cow populations.

Genome re-sequencing to identify single nucleotide polymorphism markers for muscle color traits in broiler chickens

  • Kong, H.R.;Anthony, N.B.;Rowland, K.C.;Khatri, B.;Kong, B.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.1
    • /
    • pp.13-18
    • /
    • 2018
  • Objective: Meat quality including muscle color in chickens is an important trait and continuous selective pressures for fast growth and high yield have negatively impacted this trait. This study was conducted to investigate genetic variations responsible for regulating muscle color. Methods: Whole genome re-sequencing analysis using Illumina HiSeq paired end read method was performed with pooled DNA samples isolated from two broiler chicken lines divergently selected for muscle color (high muscle color [HMC] and low muscle color [LMC]) along with their random bred control line (RAN). Sequencing read data was aligned to the chicken reference genome sequence for Red Jungle Fowl (Galgal4) using reference based genome alignment with NGen program of the Lasergene software package. The potential causal single nucleotide polymorphisms (SNPs) showing non-synonymous changes in coding DNA sequence regions were chosen in each line. Bioinformatic analyses to interpret functions of genes retaining SNPs were performed using the ingenuity pathways analysis (IPA). Results: Millions of SNPs were identified and totally 2,884 SNPs (1,307 for HMC and 1,577 for LMC) showing >75% SNP rates could induce non-synonymous mutations in amino acid sequences. Of those, SNPs showing over 10 read depths yielded 15 more reliable SNPs including 1 for HMC and 14 for LMC. The IPA analyses suggested that meat color in chickens appeared to be associated with chromosomal DNA stability, the functions of ubiquitylation (UBC) and quality and quantity of various subtypes of collagens. Conclusion: In this study, various potential genetic markers showing amino acid changes were identified in differential meat color lines, that can be used for further animal selection strategy.

Whole Genome Association Study to Detect Single Nucleotide Polymorphisms for Behavior in Sapsaree Dog (Canis familiaris)

  • Ha, J.H.;Alama, M.;Lee, D.H.;Kim, J.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.7
    • /
    • pp.936-942
    • /
    • 2015
  • The purpose of this study was to characterize genetic architecture of behavior patterns in Sapsaree dogs. The breed population (n=8,256) has been constructed since 1990 over 12 generations and managed at the Sapsaree Breeding Research Institute, Gyeongsan, Korea. Seven behavioral traits were investigated for 882 individuals. The traits were classified as a quantitative or a categorical group, and heritabilities ($h^2$) and variance components were estimated under the Animal model using ASREML 2.0 software program. In general, the $h^2$ estimates of the traits ranged between 0.00 and 0.16. Strong genetic ($r_G$) and phenotypic ($r_P$) correlations were observed between nerve stability, affability and adaptability, i.e. 0.9 to 0.94 and 0.46 to 0.68, respectively. To detect significant single nucleotide polymorphism (SNP) for the behavioral traits, a total of 134 and 60 samples were genotyped using the Illumina 22K CanineSNP20 and 170K CanineHD bead chips, respectively. Two datasets comprising 60 (Sap60) and 183 (Sap183) samples were analyzed, respectively, of which the latter was based on the SNPs that were embedded on both the 22K and 170K chips. To perform genome-wide association analysis, each SNP was considered with the residuals of each phenotype that were adjusted for sex and year of birth as fixed effects. A least squares based single marker regression analysis was followed by a stepwise regression procedure for the significant SNPs (p<0.01), to determine a best set of SNPs for each trait. A total of 41 SNPs were detected with the Sap183 samples for the behavior traits. The significant SNPs need to be verified using other samples, so as to be utilized to improve behavior traits via marker-assisted selection in the Sapsaree population.

Large Cohort Association of Single Nucleotide Polymorphism of PLA2G4A Gene with White Blood Cell Counts in Korean Population

  • Jung, Suk-Yul
    • Biomedical Science Letters
    • /
    • v.18 no.1
    • /
    • pp.71-75
    • /
    • 2012
  • The PLA2G4A catalyzes the hydrolysis of membrane phospholipids to release arachidonic acid, which is metabolized into lipid-based cellular hormones that regulate inflammatory response. The circulating blood cell numbers can be influenced by stress, infection or inflammation. Quantitative blood cell count traits analysis for the 19 SNPs in the PLA2G4A gene in the Korean Association Resource (KARE) cohort (7551 subjects) was performed. The only one SNP (rs10752979) in the all blood cell count was satisfied with the Bonferroni corrected P-value (<0.00263). Furthermore, 6 of the 19 SNPs in the PLA2G4A gene showed a weak or moderate association with blood cell count (P-values: 0.0048~0.042), suggesting the clue of an association between the PLA2G4A gene and blood cell count, especially white blood cell count. This study may provide insight into the genetic basis of blood cell count related with reaction of infection.

Genetic association of polymorphisms in porcine RGS16 with porcine circovirus viral load in naturally infected Yorkshire pigs

  • Lee, Seung-Hoon;Lim, Kyu-Sang;Hong, Ki-Chang;Kim, Jun-Mo
    • Journal of Animal Science and Technology
    • /
    • v.63 no.6
    • /
    • pp.1223-1231
    • /
    • 2021
  • Regulator of G protein signaling 16 (RGS16) is known to be associated with porcine circovirus type 2 (PCV2). PCV2 associated disease (PCVAD) is a serious problem in the swine industry. The representative symptoms of PCVAD are high viral titer proliferation and decreased average daily gain. In this study, we identified single nucleotide polymorphisms (SNPs) in the RGS16 region, including the upstream region. Of the 22 identified SNPs, rs332913874, rs326071195, and rs318298586 were genotyped in 142 Yorkshire pigs. These SNPs were significantly associated with the PCV2 viral load. Moreover, the haplotype combination was also related to the PCV2 viral load. The haplotype and diplotype analysis also had a significant difference with the PCV2 viral load. Taken together, our results suggest that RGS16 SNPs considerably affect the PCV2 viral load.

Identification of Single Nucleotide Polymorphism Marker and Association Analysis of Marbling Score in Fas Gene of Hanwoo

  • Kim, Seung-Chang;Lee, Seung-Hwan;Lee, Ji-Woong;Kim, Tae-Hun;Choi, Bong-Hwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.1
    • /
    • pp.23-28
    • /
    • 2016
  • The Fas (APO-1, TNFRSF6) gene known as a member of the tumor necrosis factor receptor superfamily was selected for DNA marker development in Korean cattle. It is a cell membrane protein and mediates programmed cell death (apoptosis). We discovered single nucleotide polymorphisms (SNPs) within Fas gene in order to develop novel DNA markers related to economical traits at the genomic level. The sequences of whole exon and 1 kb range of both front and back of the gene were determined by direct-sequencing methods using 24 cattle. A total of 55 SNPs were discovered and we selected 31 common polymorphic sites considering their allele frequencies, haplotype-tagging status and linkage disequilibrium (LD) for genotyping in larger-scale subjects. The SNPs were confirmed genotype through the SNaPshot method (n = 274) and were examined for a possible genetic association between Fas polymorphisms and marbling score. So, the SNPs that were identified significant are g.30256G>C, g.31474C>A, g.31940A>G, and g.32982G>A. These results suggest that SNPs of Fas gene were associated with intramuscular fat content of meat quality traits in Korean cattle.

Identification of Single Nucleotide Polymorphisms in PRNP Gene of Korean Native Goats

  • Hoque, Md. Rashedul;Yu, Seong-Lan;Yeon, Seong-Heum;Lee, Jun-Heon
    • Journal of Animal Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.453-458
    • /
    • 2009
  • Prion protein (PRNP) is known to be a causative protein for transmissible spongiform encephalopathy (TSE), a disease occurring in human and animals. Previous results indicate that the genetic variability can affect the resistance and susceptibility of goat scrapie and can give the guideline for reducing the risk of this disease. Until now, 35 single nucleotide polymorphisms (SNPs) were identified in goat PRNP gene from many countries such as Great Britain, Italy, United States of America and Asian countries etc. In this study, SNPs in PRNP gene have been investigated to research the PRNP variations and their possible TSE risks in 60 Korean native goats. Based on the sequencing results, we identified four SNPs and three of those polymorphisms (G126A, C414T and C718T) were synonymous and the A428G polymorphism was non-synonymous which changes the amino acid histidine to arginine. Previously, all of these four SNPs were identified in Asian native goats. Specifically, five polymorphisms were identified in Asian native goats and two of them (G126A and C414T) were silent mutations, and the other SNPs (T304G, A428G and T718C) caused amino acid changes (W102G, H143R and S240P). Comparing with SNP results from other breeds, this study is an initial step to understand resistance and susceptibility of this disease in Korean native goats.

Gemoetrical verification of protein structure for single nucleotide polymorphism (SNP)

  • Uhm, Won-Suhk;Lee, Sung-Geun;Kim, Yang-Seok
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.256-259
    • /
    • 2005
  • Among non-synonymous SNPs that cause amino acid change in the protein product, the selection of disease-causing SNPs has been of great interest. We present the comparison between the evolutionary (SIFT score) and structural information (binding pocket) to show that the incorporation between them provides an advantage of sorting disease-causing SNPs from normal SNPs. To set up the procedure, we apply the machine learning method to the test data set from the laboratory experiments.

  • PDF

Detection of single-nucleotide polymorphism in RPB2 of Wolfiporia hoelen strains and assessment of its applicability for strain breeding (복령 균주의 RPB2 유전자 내 단일염기다형성 및 육종 활용성 분석)

  • Su Yeon, Kim;Mi-Jeong, Park;Seong Hwan, Kim;Kang-Hyeon, Ka
    • Journal of Mushroom
    • /
    • v.20 no.4
    • /
    • pp.199-207
    • /
    • 2022
  • The demand for novel strains has been rising in the domestic market to increase the production of sclerotia from Wolfiporia hoelen. To improve strain breeding efficiency, we investigated whether single-nucleotide polymorphisms (SNPs) in the RNA polymerase II subunit (RPB2) gene, which may be linked to the mating type locus, are useful for distinguishing monokaryons from dikaryons in Korean W. hoelen strains. We designed a specific primer set to efficiently amplify a region of RPB2 using PCR with the genomic DNA of 12 cultivated strains and 31 wild strains of W. hoelen collected from Korea. Nucleotide sequences of the PCR-amplified RPB2 genes were determined and analyzed for the presence of SNPs among the 43 W. hoelen strains. Previously reported SNP loci were detected in the RPB2 gene of all W. hoelen strains tested. However, these previously reported SNP loci could not be applied to differentiate monokaryons from dikaryons in approximately one-third of Korean wild strains with homozygous genotypes. Three additional SNPs in the RPB2 gene, which may improve the ability to distinguish monokaryons from dikaryons, were identified by searching through the multiple sequence alignments of the 43 W. hoelen strains. The applicability of these three novel SNPs, together with the previously known SNPs, in the RPB2 gene to W. hoelen strain breeding was verified by examining the hybrid strains and their parental strains.