• Title/Summary/Keyword: SNP Identification

Search Result 195, Processing Time 0.032 seconds

Identification of specific SNP molecular marker from Cudrania tricuspidata using DNA sequences of chloroplast TrnL-F region (구지뽕 나무의 엽록체 TrnL-F 영역 염기서열 분석을 통한 특이적 SNP 분자마커의 확인)

  • Lee, Soo Jin;Shin, Yong-Wook;Kim, Yun-Hee;Lee, Shin-Woo
    • Journal of Plant Biotechnology
    • /
    • v.44 no.2
    • /
    • pp.135-141
    • /
    • 2017
  • Cudrania tricuspidata Bureau is a widely used medicinal perennial woody plant. For conservation and germplasm utilization of the plant, it is imperative to obtaining information regarding the genetic diversity of the plant populations. Although C. tricuspidata is an important medicinal plant registered in South Korea, no molecular markers are currently available to distinguish Korean-specific ecotypes from other ecotypes of different countries. In this study, we developed single nucleotide polymorphism (SNP) markers derived from chloroplast genomic sequences to identify distinct Korean-specific ecotypes of C. tricuspidata via the amplification refractory mutation system (ARMS)-PCR analyses. Molecular authentication of twelve C. tricuspidata ecotypes from different regions was performed, using DNA sequences in the trnL-F chloroplast intergenic region. The SNP markers developed in this study are useful for rapidly identifying specific C. tricuspidata ecotypes from different regions.

Single Nucleotide Polymorphism Marker Discovery from Transcriptome Sequencing for Marker-assisted Backcrossing in Capsicum

  • Kang, Jin-Ho;Yang, Hee-Bum;Jeong, Hyeon-Seok;Choe, Phillip;Kwon, Jin-Kyung;Kang, Byoung-Cheorl
    • Horticultural Science & Technology
    • /
    • v.32 no.4
    • /
    • pp.535-543
    • /
    • 2014
  • Backcross breeding is the method most commonly used to introgress new traits into elite lines. Conventional backcross breeding requires at least 4-5 generations to recover the genomic background of the recurrent parent. Marker-assisted backcrossing (MABC) represents a new breeding approach that can substantially reduce breeding time and cost. For successful MABC, highly polymorphic markers with known positions in each chromosome are essential. Single nucleotide polymorphism (SNP) markers have many advantages over other marker systems for MABC due to their high abundance and amenability to genotyping automation. To facilitate MABC in hot pepper (Capsicum annuum), we utilized expressed sequence tags (ESTs) to develop SNP markers in this study. For SNP identification, we used Bukang $F_1$-hybrid pepper ESTs to prepare a reference sequence through de novo assembly. We performed large-scale transcriptome sequencing of eight accessions using the Illumina Genome Analyzer (IGA) IIx platform by Solexa, which generated small sequence fragments of about 90-100 bp. By aligning each contig to the reference sequence, 58,151 SNPs were identified. After filtering for polymorphism, segregation ratio, and lack of proximity to other SNPS or exon/intron boundaries, a total of 1,910 putative SNPs were chosen and positioned to a pepper linkage map. We further selected 412 SNPs evenly distributed on each chromosome and primers were designed for high throughput SNP assays and tested using a genetic diversity panel of 27 Capsicum accessions. The SNP markers clearly distinguished each accession. These results suggest that the SNP marker set developed in this study will be valuable for MABC, genetic mapping, and comparative genome analysis.

Identification of Single Nucleotide Polymorphisms (SNPs) of the Bovine Growth Hormone (bGH) Gene Associated with Growth and Carcass Traits in Hanwoo

  • Lee, Ji-Hong;Lee, Yun-Mi;Lee, Jea-Young;Oh, Dong-Yep;Jeong, Dae-Jin;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.10
    • /
    • pp.1359-1364
    • /
    • 2013
  • The purpose of this study was to find any association of the bovine growth hormone (bGH) gene with growth and carcass quality traits in Korean native cattle, Hanwoo. Genomic DNA was extracted from 21 Hanwoo individuals, and the 47 to 2,528 bp region of the bGH 2,856 bp (GenBank accession number M57764) including the promoter and the five exons was sequenced. A total of ten bGH SNPs were confirmed, including four (253 C>T, 303 C>T, 502 C>T, and 559 G>A) in the promoter, one (679 C>T) in exon 1, one (1,692 T>C) in intron 3, and four (2141 C>G, 2258 C>T, 2277 C>T, and 2291 A>C) in exon 5. The ten bGH SNPs were genotyped for a sample of 242 Hanwoo steers and association tests were performed to find any significant SNP that was correlated with growth and carcass quality. Of the SNPs, the 303 C>T SNP in the promoter region was significantly associated with 6-month-old weight, the 559 G>A SNP with longissimus dorsi muscle area, the 2141 C>G SNP in exon 5 with daily weight gain, and the 2258 C>T SNP with daily weight gain and carcass weight (p<0.05). The significant SNPs need to be verified in other Hanwoo populations before considering implementation of marker-assisted selection for genetic improvement of growth and carcass quality in Hanwoo.

Comparison of the Microsatellite and Single Nucleotide Polymorphism Methods for Discriminating among Hanwoo (Korean Native Cattle), Imported, and Crossbred Beef in Korea

  • Heo, Eun-Jeong;Ko, Eun-Kyung;Seo, Kun-Ho;Chon, Jung-Whan;Kim, Young-Jo;Park, Hyun-Jung;Wee, Sung-Hwan;Moon, Jin-San
    • Food Science of Animal Resources
    • /
    • v.34 no.6
    • /
    • pp.763-768
    • /
    • 2014
  • The identity of 45 Hanwo and 47 imported beef (non-Hanwoo) samples from USA and Australia were verified using the microsatellite (MS) marker and single nucleotide polymorphism (SNP) methods. Samples were collected from 19 supermarkets located in the city of Seoul and Gyeonggi province, South Korea, from 2009 to 2011. As a result, we obtained a 100% concordance rate between the MS and SNP methods for identifying Hanwoo and non-Hanwoo beef. The MS method presented a 95% higher individual discriminating value for Hanwoo (97.8%) than for non-Hanwoo (61.7%) beef. For further comparison of the MS and SNP methods, blood samples were collected and tested from 54 Hanwoo ${\times}$ Holstein crossbred cattle (first, second, and third generations). By using the SNP and MS methods, we correctly identified all of the first-generation crossbred cattle as non-Hanwoo; in addition, among the second and third generation crossbreds, the ratio identified as Hanwoo was 20% and 10%, respectively. The MS method used in our study provides more information, but requires sophisticated techniques during each experimental process. By contrast, the SNP method is simple and has a lower error rate. Our results suggest that the MS and SNP methods are useful for discriminating Hanwoo from non-Hanwoo breeds.

Development of SNP markers for the identification of apple flesh color based on RNA-Seq data (RNA-Seq data를 이용한 사과 과육색 판별 SNP 분자표지 개발)

  • Kim, Se Hee;Park, Seo Jun;Cho, Kang Hee;Lee, Han Chan;Lee, Jung Woo;Choi, In Myung
    • Journal of Plant Biotechnology
    • /
    • v.44 no.4
    • /
    • pp.372-378
    • /
    • 2017
  • For comparison of the transcription profiles in apple (Malus domestica L.) cultivars differing in flesh color expression, two cDNA libraries were constructed. Differences in gene expression between red flesh apple cultivar, 'Redfield' and white flesh apple cultivar, 'Granny Smith' were investigated by next-generation sequencing (NGS). Expressed sequence tag (EST) of clones from the red flesh apple cultivar and white flesh apple cultivar were selected for nucleotide sequence determination and homology searches. High resolution melting (HRM) technique measures temperature induced strand separation of short PCR amplicons, and is able to detect variation as small as one base difference between red flesh apple cultivars and white flesh apple cultivars. We applied high resolution melting (HRM) analysis to discover single nucleotide polymorphisms (SNP) based on the predicted SNP information derived from the apple EST database. All 103 pairs of SNPs were discriminated, and the HRM profiles of amplicons were established. Putative SNPs were screened from the apple EST contigs by HRM analysis displayed specific difference between 10 red flesh apple cultivars and 11 white flesh apple cultivars. In this study, we report an efficient method to develop SNP markers from an EST database with HRM analysis in apple. These SNP markers could be useful for apple marker assisted breeding and provide a good reference for relevant research on molecular mechanisms of color variation in apple cultivars.

Identification of a Single Nucleotide Polymorphism (SNP) Marker for the Detection of Enhanced Honey Production in Hoenybee (수밀력 우수 꿀벌 계통 판별을 위한 계통 특이 분자마커 개발)

  • Kim, Hye-Kyung;Lee, Myeong-Lyeol;Lee, Man-Young;Choi, Yong-Soo;Kim, Dongwon;Kang, Ah Rang
    • Journal of Apiculture
    • /
    • v.32 no.3
    • /
    • pp.147-154
    • /
    • 2017
  • Honeybees (Apis mellifera) are common pollinators and important insects studied in agriculture, ecology and basic research. Recently, RDA (Rural Development Administration) and YIRI (Yecheon-gun Industrial Insect Research Institute) have been breeding a triple crossbred honey bee named Jangwon, which have the ability to produce superior quality honey. In this study, we identified a single nucleotide polymorphism (SNP) marker in the genome of Jangwon honeybee, particularly, in the paternal line (D line). Initially, we performed Sequence-Based Genotyping (SBG) using the Illumina Hiseq 2500 in 5 honeybee inbred lines; A, C, D, E, and F; and obtained 1,029 SNPs. Seventeen SNPs for each inbred line were generated and selected after further filtering of the SNP dataset. The 17 SNP markers validated by performing TaqMan probe-based real-time PCR and genotyping analysis was conducted. Genotyping analysis of the 5 honeybee inbred lines and one hybrid line, $D{\times}F$, revealed that one set of SNP marker, AmD9, precisely discriminated the inbred line D from the others. Our results suggest that the identified SNP marker, AmD9, is successful in distinguishing the inbred honeybee lines D, and can be directly used for genotyping and breeding applications.

Development of SNP Molecular Marker for Red-fleshed Color Identification of Peach Genetic Resources (복숭아 유전자원의 적색 과육 판별 SNP 분자표지 개발)

  • Kim, Se Hee;Nam, Eun Young;Cho, Kang Hee;Jun, Ji Hae;Chung, Kyeong Ho
    • Korean Journal of Plant Resources
    • /
    • v.32 no.4
    • /
    • pp.303-311
    • /
    • 2019
  • Various colors of fruit skin and flesh are the most popular commercial criteria for peach classification. In order to breed new red-fleshed peach cultivar, many cross seedlings and generations should be maintained. Therefore it is necessary to develop early selection markers to screen seedlings with target traits to increase breeding efficiency. For the comparison of transcription profiles in peach cultivars differing in flesh color expression, two cDNA libraries were constructed. Differences in gene expression between red-fleshed peach cultivar, 'Josanghyeoldo' and white-fleshed peach cultivar, 'Mibaekdo' were analyzed by next-generation sequencing (NGS). Expressed sequence tag (EST) of clones from the two cultivars were selected for nucleotide sequence determination and homology searches. Putative single nucleotide polymorphisms (SNP) were screened from peach EST contigs by high resolution melting (HRM) analysis displayed specific difference between 8 red-fleshed peach cultivars and 24 white-fleshed peach cultivars. All 72 pairs of SNPs were discriminated and the HRM profiles of amplicons were established. In the study reported here, the development of SNP markers for distinguishing between red and white fleshed peach cultivars by HRM analysis offers the opportunity to use DNA markers. This SNP marker could be useful for peach marker assisted breeding and provide a good reference for relevant research on molecular mechanisms of color variation in peach cultivars.

Identification and characterization of novel single nucleotide polymorphism markers for fat deposition in muscle tissue of pigs using amplified fragment length polymorphism

  • Supakankul, Pantaporn;Kumchoo, Tanavadee;Mekchay, Supamit
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.3
    • /
    • pp.338-346
    • /
    • 2017
  • Objective: This study was conducted to identify and evaluate the effective single nucleotide polymorphism (SNP) markers for fat deposition in the longissimus dorsi muscles of pigs using the amplified fragment length polymorphism (AFLP) approach. Methods: Sixty-four selective primer combinations were used to identify the AFLP markers in the 20 highest- and 20 lowest-intramuscular fat (IMF) content phenotypes. Five AFLP fragments were converted into simple codominant SNP markers. These SNP markers were tested in terms of their association with IMF content and fatty acid (FA) composition traits in 620 commercially crossbred pigs. Results: The SSC7 g.4937240C>G marker showed an association with IMF content (p<0.05). The SSC9 g.5496647_5496662insdel marker showed a significant association with IMF content and arachidonic levels (p<0.05). The SSC10 g.71225134G>A marker revealed an association with palmitoleic and ${\omega}9$ FA levels (p<0.05), while the SSC17 g.61976696G>T marker showed a significant association with IMF content and FA levels of palmitoleic, eicosenoic, arachidonic, monounsaturated fatty acids, and ${\omega}9$ FA levels. However, no significant association of SSC8 g.47338181G>A was observed with any IMF and FA levels in this study. Conclusion: Four SNP markers (SSC7 g.4937240C>G, SSC9 g.5496647_5496662insdel, SSC10 g.71225134G>A, and SSC17 g.61976696G>T) were found to be associated with IMF and/or FA content traits in commercially crossbred pigs. These findings provide evidence of the novel SNP markers as being potentially useful for selecting pigs with the desirable IMF content and FA composition.