• 제목/요약/키워드: SNIPE

검색결과 16건 처리시간 0.02초

Nanosat Formation Flying Design for SNIPE Mission

  • Kang, Seokju;Song, Youngbum;Park, Sang-Young
    • Journal of Astronomy and Space Sciences
    • /
    • 제37권1호
    • /
    • pp.51-60
    • /
    • 2020
  • This study designs and analyzes satellite formation flying concepts for the Small scale magNetospheric and Ionospheric Plasma Experiments (SNIPE) mission, that will observe the near-Earth space environment using four nanosats. To meet the requirements to achieve the scientific objectives of the SNIPE mission, three formation flying concepts are analyzed: a cross-shape formation, a square-shape formation, and a cross-track formation. Of the three formation flying scenarios, the cross-track formation scenario is selected as the final scenario for the SNIPE mission. The result of this study suggests a relative orbit control scenario for formation maintenance and reconfiguration, and the initial relative orbits of the four nanosats meeting the formation requirements and thrust limitations of the SNIPE mission. The formation flying scenario is validated by calculating the accumulated total thrust required for the four nanosats. If the cross-track formation scenario presented in this study is applied to the SNIPE mission, it is expected that the mission will be successfully accomplished.

초소형위성 SNIPE 본체 설계 및 개발 (Design and Development of the SNIPE Bus System)

  • 김해동;최원섭;김민기;김진형;김기덕;김지석;조동현;이재진
    • 우주기술과 응용
    • /
    • 제2권2호
    • /
    • pp.81-103
    • /
    • 2022
  • 본 논문에서는 근지구 우주환경을 관측하기 위해 국내 최초로 4기가 편대비행으로 운용되는 6U 초소형위성 SNIPE(국문명 도요샛; small scale magnetospheric and Ionospheric plasma experiment )의 본체(BUS) 설계 내용과 개발 과정에 대해 기술하였다. SNIPE는 지구 주위 우주환경을 입체적으로 관측하기 위해 4기가 편대비행을 수행하며, 전리권에서 우주 플라즈마 밀도 및 온도, 그리고 태양 자기장과 전자파 등의 시간적 변화를 동시에 관측한다. 임무 기간은 최소 6개월 이상으로 신뢰성을 높이기 위해 시험인증모델(EQM)과 비행모델(flight model, FM)으로 나누어 개발하였다. 현재 총 4기의 비행모델의 개발을 완료하고 우주환경시험을 모두 마친 SNIPE는 2023년 발사 예정이다. 본 논문에서는 발사를 앞둔 SNIPE 위성 본체의 설계 내용과 개발 과정을 소개하며, 향후 국내에서도 본격적인 임무 수행을 위한 6U급 초소형위성 개발에 유용한 참고 자료가 되기를 기대한다.

Formation CubeSat Constellation, SNIPE mission

  • Lee, Jaejin
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.58.4-59
    • /
    • 2021
  • This presentation introduces Korea's SNIPE (Small scale magNespheric and Ionospheric Plasma Experiment) mission, formation flying CubeSat constellation. Observing particles and waves on a single satellite suffers from inherent space-time ambiguity. To observe spatial and temporal variations of the micro-scale plasma structures on the topside ionosphere, four 6U CubeSats (~ 10 kg) will be launched into a polar orbit of the altitude of ~500 km in 2021. The distances of each satellite will be controlled from 10 km to more than 100 km by formation flying algorithm. The SNIPE mission is equipped with identical scientific instruments, solid-state telescope, magnetometer, and Langmuir probe. All the payloads have a high temporal resolution (sampling rates of about 10 Hz). Iridium modules provide an opportunity to upload changes in operational modes when geomagnetic storms occur. SNIPE's observations of the dimensions, occurrence rates, amplitudes, and spatiotemporal evolution of polar cap patches, field-aligned currents (FAC), radiation belt microbursts, and equatorial and mid-latitude plasma blobs and bubbles will determine their significance to the solar wind-magnetosphere-ionosphere interaction and quantify their impact on space weather.

  • PDF

SNIPE 초소형위성용 Iridium 통신 모듈의 가시성 분석 (Visibility Analysis of Iridium Communication for SNIPE Nano-Satellite)

  • 조동현;김홍래;김해동
    • 한국항공우주학회지
    • /
    • 제50권2호
    • /
    • pp.127-135
    • /
    • 2022
  • 국내 초소형위성의 경우 개발 사례가 지속적으로 늘어나는 것에 비해 초기의 통신 성공률이 상대적으로 낮다. 이러한 상황에서 최근 상용 위성통신망을 활용한 저궤도 위성의 통신사례가 늘고 있으며, 이에 한국천문연구원, 한국항공우주연구원 및 연세대학교에서 개발하고 있는 SNIPE 프로젝트에서는 이리디움(Iridium) 모듈을 이용한 초소형위성의 통신링크를 시험하고자 한다. 이에 본 논문에서는 이리디움 위성군에 대한 궤도 및 통신환경과 SNIPE 위성의 이리디움 모듈 및 자세지향 모드를 고려한 이리디움 모듈의 가시성을 분석하였다. 저궤도 위성의 경우 높은 고도에 따른 상대적으로 적은 이리디움 통신 커버리지 및 이리디움 통신망에서 고려하고 있는 도플러 변화량에 비해 높은 변화량에 따른 통신 가능성이 제한되었다. 이러한 이유로 인해 이리디움 위성군과의 상대적인 승교점 적경각의 차이에 따라 좀 더 많은 성능 차이를 보이는 것을 확인해 볼 수 있었다. 마지막으로 초소형위성의 초기 사출시 발생되는 회전운동 상태에 대한 통신 모듈의 가시성 분석을 통해 해당 기술에 대한 활용 가능성을 분석해 보았다.

초소형위성 SNIPE(Scale Magnetospheric and Ionospheric Plasma Experiment) 시제인증모델의 발사환경시험 및 분석 (Launch Environment Test for Scale magNetospheric and Ionospheric Plasma Experiment (SNIPE) Engineering Qualification Model)

  • 김민기;김해동;최원섭;김진형;김기덕;김지석;조동현
    • 우주기술과 응용
    • /
    • 제1권3호
    • /
    • pp.319-336
    • /
    • 2021
  • 본문은 과학관측임무 초소형위성인 SNIPE(Scale magNetospheric and Ionospheric Plasma Experiment)의 시제인증모델(EQM)에 대한 발사환경시험 수행 결과 및 이를 통해 얻을 수 있는 신뢰성 있는 초소형위성 개발 방향에 대해 논한다. SNIPE는 우주기상관측을 포함한 다양한 탑재체를 지닌 6U급 초소형위성으로 4기가 편대비행을 하며 임무를 수행한다. 다수의 비행모델 제작 전 시제인증모델을 통해 먼저 설계 및 제작의 유용성을 검증하고자 하였다. 시제인증모델의 발사환경시험은 2019년 1차 시험이 수행되었고, 여기서 발견된 일부 문제점을 교정하여 2021년에 2차 시험을 수행함으로써 모든 문제가 해결되었음을 확인할 수 있었다. 두 차례의 시험에서 특이할 점은 1차 시험의 발사관과 2차 시험의 발사관이 다르다는 점인데, 1차 시험용 발사관과 달리 2차 시험의 발사관은 내부의 초소형위성을 고정하는 기능이 있어서 내부 초소형위성이 실제 받는 구조적 하중이 1차 시험에 비해 훨씬 경감되었다는 점이다. 본 논문은 두 시험의 결과로 나타난 특징을 분석하고, 차후 여타 초소형위성의 구조 설계에 반영할 수 있는 지침들을 제시하였다.

우주날씨 관측을 위한 큐브위성 도요샛 임무 (SNIPE Mission for Space Weather Research)

  • 이재진;손종대;박재흥;양태용;송호섭;황정아;곽영실;박원기
    • 우주기술과 응용
    • /
    • 제2권2호
    • /
    • pp.104-120
    • /
    • 2022
  • 도요샛(Small Scale magNetospheric and Ionospheric Plasma Experiment, SNIPE)의 과학임무는 전리권 상층부 소규모 플라즈마 구조의 공간적 시간적 변화를 관찰하는 것이다. 이를 위해 4개의 6U 큐브위성(10 kg)이 고도 약 500 km 극궤도로 발사될 예정이며, 상호 위성 간 거리는 편대 비행 알고리즘에 의해 수 10 km에서 수 1,000 km 이상으로 제어된다. 운영 초기에는 4기의 위성이 같은 궤도 평면에 위치하는 종대비행을 하다가 경도상에서 나란히 배치되는 횡대비행으로 전환하여 4기의 서로 다른 지점에서 공간적인 변화를 관측하게 된다. 도요샛에는 입자 검출기, 랑뮈어 탐침, 자력계로 구성된 우주날씨 관측 장비가 각 위성에 탑재된다. 모든 관측기는 10 Hz 이상의 높은 시간 분해능을 가지며 큐브위성에 최적화 설계되었다. 이 외에도 이리디듐 통신 모듈은 지자기 폭풍이 발생할 때 작동 모드를 변경하기 위한 명령을 업로드할 수 있는 기회를 제공한다. 도요샛은 극 지역 플라즈마 밀도 급상승, 필드 정렬 전류, 고에너지 전자의 국소 영역 침투, 적도 및 중위도 플라즈마 거품의 발생 및 시공간적 진화에 대한 관찰을 수행할 예정이며, 이를 통해 태양풍이 우주날씨에 어떠한 영향을 미치는지 탐구하게 된다. 도요샛은 2023년 상반기 러시아 소유즈-2에 의해 카자흐스탄 바이코누르에서 발사될 예정이다.

Limitations of Electromagnetic Ion Cyclotron Wave Observations in Low Earth Orbit

  • Hwang, Junga;Kim, Hyangpyo;Park, Jaeheung;Lee, Jaejin
    • Journal of Astronomy and Space Sciences
    • /
    • 제35권1호
    • /
    • pp.31-37
    • /
    • 2018
  • Pc1 pulsations are geomagnetic fluctuations in the frequency range of 0.2 to 5 Hz. There have been several observations of Pc1 pulsations in low earth orbit by MAGSAT, DE-2, Viking, Freja, CHAMP, and SWARM satellites. However, there has been a clear limitation in resolving the spatial and temporal variations of the pulsation by using a single-point observation by a single satellite. To overcome such limitations of previous observations, a new space mission was recently initiated, using the concept of multi-satellites, named the Small scale magNetospheric and Ionospheric Plasma Experiments (SNIPE). The SNIPE mission consists of four nanosatellites (~10 kg), which will be launched into a polar orbit at an altitude of 600 km (TBD) in 2020. Four satellites will be deployed in orbit, and the distances between each satellite will be controlled from 10 to 1,000 km by a high-end formation-flying algorithm. One of the possible science targets of the SNIPE mission is observing electromagnetic ion cyclotron (EMIC) waves. In this paper, we report on examples of observations, showing the limitations of previous EMIC observations in low earth orbit, and suggest possibilities to overcome those limitations through a new mission.

Gamma-Ray Burst Observation by SNIPE mission

  • Lee, Jae-Jin;Kim, Hong Joo;Nam, Uk-Won;Park, Won-Kee;Shon, Jongdae;Kim, Soon-Wook;Kim, Jeong-Sook;Kang, Yong-Woo;Uhm, Z. Lucas;Kang, Sinchul;Im, Sang Hyeok;Kim, Sunghwan
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.39.3-40
    • /
    • 2020
  • For the space weather research, KASI (Korea Astronomy and Space Science Institute) is developing the SNIPE (Small-scale magNetospheric and Ionospheric Plasma Experiment) mission, which consists of four 6U CubeSats of ~10 kg. Besides of space weather research, the SNIPE mission has another astrophysical objective, detecting Gamma-Ray Bursts(GRB). By cross-correlating the light curves of the detected GRBs, the fleet shall be able to determine the time difference of the arriving signal between the satellites and thus determine the position of bright short bursts with an accuracy ~100'. To demonstrate the technology of the GRB observation, CSI gamma-ray detectors combined with GPS and IRIDIUM communication modules are placed on each SNIPE CubeSat. The time of each spacecraft is synchronized and when the GRB is detected, the light curve will be transferred to the Mission Operation Center (MOC) by IRIDIUM communication module. By measuring time difference of each GRB signals, the technology for localization of GRB will be proved. If the results show some possibilities, we can challenge the new astrophysical mission for investigating the origin of GRB.

  • PDF

Small scale magNetospheric and Ionospheric Plasma Experiments; SNIPE mission

  • Hwang, Junga;Lee, Jaejin;Shon, Jongdae;Park, Jaeheung;Kwak, Young-Sil;Nam, Uk-Won;Park, Won-Kee
    • 천문학회보
    • /
    • 제42권1호
    • /
    • pp.40.3-41
    • /
    • 2017
  • Korea Astronomy and Space Science Institute The observation of particles and waves using a single satellite inherently suffers from space-time ambiguity. Recently, such ambiguity has often been resolved by multi-satellite observations; however, the inter-satellite distances were generally larger than 100 km. Hence, the ambiguity could be resolved only for large-scale (> 100 km) structures while numerous microscale phenomena have been observed at low altitude satellite orbits. In order to resolve those spatial and temporal variations of the microscale plasma structures on the topside ionosphere, SNIPE mission consisted of four (TBD) nanosatellites (~10 kg) will be launched into a polar orbit at an altitude of 700 km (TBD). Two pairs of satellites will be deployed on orbit and the distances between each satellite will be from 10 to 100 km controlled by a formation flying algorithm. The SNIPE mission is equipped with scientific payloads which can measure the following geophysical parameters: density/temperature of cold ionospheric electrons, energetic (~100 keV) electron flux, and magnetic field vectors. All the payloads will have high temporal resolution (~ 16 Hz (TBD)). This mission is planned to launch in 2020. The SNIPE mission aims to elucidate microscale (100 m-10 km) structures in the topside ionosphere (below altitude of 1,000 km), especially the fine-scale morphology of high-energy electron precipitation, cold plasma density/temperature, field-aligned currents, and electromagnetic waves. Hence, the mission will observe microscale structures of the following phenomena in geospace: high-latitude irregularities, such as polar-cap patches; field-aligned currents in the auroral oval; electro-magnetic ion cyclotron (EMIC) waves; hundreds keV electrons' precipitations, such as electron microbursts; subauroral plasma density troughs; and low-latitude plasma irregularities, such as ionospheric blobs and bubbles. We have developed a 6U nanosatellite bus system as the basic platform for the SNIPE mission. Three basic plasma instruments shall be installed on all of each spacecraft, Particle Detector (PD), Langmuir Probe (LP), and Scientific MAGnetometer (SMAG). In addition we now discuss with NASA and JAXA to collaborate with the other payload opportunities into SNIPE mission.

  • PDF

Feasibility Study of Communication Access via Iridium Constellation for Small-Scale Magnetospheric Ionospheric Plasma Experiment Mission

  • Song, Hosub;Lee, Jaejin;Yi, Yu
    • Journal of Astronomy and Space Sciences
    • /
    • 제39권3호
    • /
    • pp.109-116
    • /
    • 2022
  • The small-scale magnetospheric and ionospheric plasma experiment (SNIPE) is a mission initiated by the Korea Astronomy and Space Science Institute (KASI) in 2017 and comprises four 6U-sized nano-satellites (Korea Astronomy and Space Science Institute Satellite-1, KASISat-1) flying in formations. The main goal of the SNIPE mission is to investigate the space environment in low Earth orbit at 500-km. Because Iridium & GPS Board (IGB) is installed on the KASISat-1, a communication simulation is required to analyze the contact number and the duration. In this study, communication simulations between the Iridium satellite network and KASISat-1 are performed using STK Pro (System Tool Kit Pro Ver 11.2) from the AGI (Analytical Graphics, Inc.). The contact number and durations were analyzed by each orbit and date. The analysis shows that the average access number per day is 38.714 times, with an average of 2.533 times per orbit for a week. Furthermore, on average, the Iridium satellite communication is linked for 70.597 min daily. Moreover, 4.625 min is the average duration of an individual orbit.