• Title/Summary/Keyword: SMS 스팸

Search Result 20, Processing Time 0.031 seconds

SMS Text Messages Filtering using Word Embedding and Deep Learning Techniques (워드 임베딩과 딥러닝 기법을 이용한 SMS 문자 메시지 필터링)

  • Lee, Hyun Young;Kang, Seung Shik
    • Smart Media Journal
    • /
    • v.7 no.4
    • /
    • pp.24-29
    • /
    • 2018
  • Text analysis technique for natural language processing in deep learning represents words in vector form through word embedding. In this paper, we propose a method of constructing a document vector and classifying it into spam and normal text message, using word embedding and deep learning method. Automatic spacing applied in the preprocessing process ensures that words with similar context are adjacently represented in vector space. Additionally, the intentional word formation errors with non-alphabetic or extraordinary characters are designed to avoid being blocked by spam message filter. Two embedding algorithms, CBOW and skip grams, are used to produce the sentence vector and the performance and the accuracy of deep learning based spam filter model are measured by comparing to those of SVM Light.

A SVM-based Spam Filtering System for Short Message Service (SMS) (휴대폰 SMS를 위한 SVM 기반의 스팸 필터링 시스템)

  • Joe, In-Whee;Shim, Hye-Taek
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9B
    • /
    • pp.908-913
    • /
    • 2009
  • Mobile phones became important household appliance that cannot be without in our daily lives. And the short messaging service (SMS) in these mobile phones is 1.5 to 2 times more than the voice service. However, the spam filtering functions installed in mobile phones take a method to receive specific number patterns or words and recognize spam messages when those numbers or words are present. However, this method cannot properly filters various types of spam messages currently dispatched. This paper proposes a more powerful and more adaptive spam filtering system using SVM and thesaurus. The system went through a process of isolating words from sample data through pro-processing device and integrating meanings of isolated words using a thesaurus. Then it generated characteristics of integrated words through the chi-square statistics and studied the characteristics. The proposed system is realized in a Window environment and the performance is confirmed through experiments.

Implementation of A Mobile Application for Spam SMS Filtering Using Set-Based POI Search Algorithm (집합 기반 POI 검색 알고리즘을 활용한 스팸 메시지 판별 모바일 앱 구현)

  • Ahn, Hye-yeong;Cho, Wan-zee;Lee, Jong-woo
    • Journal of Digital Contents Society
    • /
    • v.16 no.5
    • /
    • pp.815-822
    • /
    • 2015
  • By the growing of SMS phishing victims, applications for processing spam messages are being released in succession. However most spam messages that cleverly modified the content like separating the consonants and vowels are fail to be filtered. In this paper, we implemented an application 'AntiSpam' which is able to identify spam strings in the text message to solve this problem. 'AntiSpam' searches spam strings in the text message by using set-based POI search algorithm, and then calculate the possibility of whether it is spam or not in accordance with the search results. In addition, it catches skillfully disguised spam messages in order to avoid missing the spam filtering. Users, who received a message, can check the result in spam message possibility decision result and the contents of the message and they can choose how to handling the message.

A Technique to Detect Spam SMS with Composed of Abnormal Character Composition Using Deep Learning (딥러닝을 이용한 비정상 문자 조합으로 구성된 스팸 문자 탐지 기법)

  • Ka-Hyeon Kim;Heonchang Yu
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.583-586
    • /
    • 2023
  • 대량 문자서비스를 통한 스팸 문자가 계속 증가하면서 이로 인해 도박, 불법대출 등의 광고성 스팸 문자에 의한 피해가 지속되고 있다. 이러한 문제점을 해결하기 위해 다양한 방법들이 연구되어 왔지만 기존의 방법들은 주로 사전 정의된 키워드나 자주 나오는 단어의 출현 빈도수를 기반으로 스팸 문자를 검출한다. 이는 광고성 문자들이 시스템에서 자동으로 필터링 되는 것을 회피하기 위해 비정상 문자를 조합하여 스팸 문자의 주요 키워드를 의도적으로 변형해 표현하는 경우에는 탐지가 어렵다는 한계가 있다. 따라서, 본 논문에서는 이러한 문제점을 해결하기 위해 딥러닝 기반 객체 탐지 및 OCR 기술을 활용하여 스팸 문자에 사용된 변형된 문자열을 정상 문자열로 복원하고, 변환된 정상 문자열을 문장 수준 이해를 기반으로 하는 자연어 처리 모델을 이용해 스팸 문자 콘텐츠를 분류하는 방법을 제안한다. 그리고 기존 스팸 필터링 시스템에 가장 많이 사용되는 키워드 기반 필터링, 나이브 베이즈를 적용한 방식과의 비교를 통해 성능 향상이 이루어짐을 확인하였다.

Spam Text Filtering by Using Sen2Vec and Feedforward Neural Network (문장 벡터와 전방향 신경망을 이용한 스팸 문자 필터링)

  • Lee, Hyun-Young;Kang, Seung-Shik
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.255-259
    • /
    • 2017
  • 스팸 문자 메시지를 표현하는 한국어의 단어 구성이나 패턴은 점점 더 지능화되고 다양해지고 있다. 본 논문에서는 이러한 한국어 문자 메시지에 대해 단어 임베딩 기법으로 문장 벡터를 구성하여 인공신경망의 일종인 전방향 신경망(Feedforward Neural Network)을 이용한 스팸 문자 메시지 필터링 방법을 제안한다. 전방향 신경망을 이용한 방법의 성능을 평가하기 위하여 기존의 스팸 문자 메시지 필터링에 보편적으로 사용되고 있는 SVM light를 이용한 스팸 문자 메시지 필터링의 정확도를 비교하였다. 학습 및 성능 평가를 위하여 약 10만 개의 SMS 문자 데이터로 학습을 진행하였고, 약 1만 개의 실험 데이터에 대하여 스팸 문자 필터링의 정확도를 평가하였다.

  • PDF

Spam Text Filtering by Using Sen2Vec and Feedforward Neural Network (문장 벡터와 전방향 신경망을 이용한 스팸 문자 필터링)

  • Lee, Hyun-Young;Kang, Seung-Shik
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.255-259
    • /
    • 2017
  • 스팸 문자 메시지를 표현하는 한국어의 단어 구성이나 패턴은 점점 더 지능화되고 다양해지고 있다. 본 논문에서는 이러한 한국어 문자 메시지에 대해 단어 임베딩 기법으로 문장 벡터를 구성하여 인공신경망의 일종인 전방향 신경망(Feedforward Neural Network)을 이용한 스팸 문자 메시지 필터링 방법을 제안한다. 전방향 신경망을 이용한 방법의 성능을 평가하기 위하여 기존의 스팸 문자 메시지 필터링에 보편적으로 사용되고 있는 SVM light를 이용한 스팸 문자 메시지 필터링의 정확도를 비교하였다. 학습 및 성능 평가를 위하여 약 10만 개의 SMS 문자 데이터로 학습을 진행하였고, 약 1만 개의 실험 데이터에 대하여 스팸 문자 필터링의 정확도를 평가하였다.

  • PDF

A Method for Spam SMS Filtering Using Bayesian Network and Multi Layer Perceptron (베이지안 네트워크와 멀티 레이어 퍼셉트론을 이용한 모바일 스팸 문자 메시지 필터링 방법)

  • Hong, Seung-Beom;Kim, Moon-Hyun
    • Annual Conference of KIPS
    • /
    • 2011.11a
    • /
    • pp.283-286
    • /
    • 2011
  • 스팸 메시지는 불특정 다수에게 보내지는 광고성 메시지로서 최근 들어 그 양이 증가하고 있는 추세이다. 본 논문에서는 모바일 환경에서의 스팸 메시지 필터링을 위한 시스템을 제안하며 기존 환경에서 자주 사용되었던 키워드 기반 필터링 시스템의 단점을 해결하고자 고안되었다. 베이지안 네트워크를 통해 스팸 메시지들의 패턴을 추출하고 추출된 패턴을 멀티 레이어 퍼셉트론을 이용해 학습하여 메시지들을 분류한다. 이 시스템을 통해 약 93.5%의 필터링 정확도률을 얻었으며 키워드 선택 대신 스팸 메시지를 선택해 학습시킴으로서 사용하기 쉽고 사용자에 맞는 시스템을 구성할 수 있었다.

A Method for Spam Message Filtering Based on Lifelong Machine Learning (Lifelong Machine Learning 기반 스팸 메시지 필터링 방법)

  • Ahn, Yeon-Sun;Jeong, Ok-Ran
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1393-1399
    • /
    • 2019
  • With the rapid growth of the Internet, millions of indiscriminate advertising SMS are sent every day because of the convenience of sending and receiving data. Although we still use methods to block spam words manually, we have been actively researching how to filter spam in a various ways as machine learning emerged. However, spam words and patterns are constantly changing to avoid being filtered, so existing machine learning mechanisms cannot detect or adapt to new words and patterns. Recently, the concept of Lifelong Learning emerged to overcome these limitations, using existing knowledge to keep learning new knowledge continuously. In this paper, we propose a method of spam filtering system using ensemble techniques of naive bayesian which is most commonly used in document classification and LLML(Lifelong Machine Learning). We validate the performance of lifelong learning by applying the model ELLA and the Naive Bayes most commonly used in existing spam filters.

Implementation of a Spam Message Filtering System using Sentence Similarity Measurements (문장유사도 측정 기법을 통한 스팸 필터링 시스템 구현)

  • Ou, SooBin;Lee, Jongwoo
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.1
    • /
    • pp.57-64
    • /
    • 2017
  • Short message service (SMS) is one of the most important communication methods for people who use mobile phones. However, illegal advertising spam messages exploit people because they can be used without the need for friend registration. Recently, spam message filtering systems that use machine learning have been developed, but they have some disadvantages such as requiring many calculations. In this paper, we implemented a spam message filtering system using the set-based POI search algorithm and sentence similarity without servers. This algorithm can judge whether the input query is a spam message or not using only letter composition without any server computing. Therefore, we can filter the spam message although the input text message has been intentionally modified. We added a specific preprocessing option which aims to enable spam filtering. Based on the experimental results, we observe that our spam message filtering system shows better performance than the original set-based POI search algorithm. We evaluate the proposed system through extensive simulation. According to the simulation results, the proposed system can filter the text message and show high accuracy performance against the text message which cannot be filtered by the 3 major telecom companies.

Unsupervised Scheme for Reverse Social Engineering Detection in Online Social Networks (온라인 소셜 네트워크에서 역 사회공학 탐지를 위한 비지도학습 기법)

  • Oh, Hayoung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.3
    • /
    • pp.129-134
    • /
    • 2015
  • Since automatic social engineering based spam attacks induce for users to click or receive the short message service (SMS), e-mail, site address and make a relationship with an unknown friend, it is very easy for them to active in online social networks. The previous spam detection schemes only apply manual filtering of the system managers or labeling classifications regardless of the features of social networks. In this paper, we propose the spam detection metric after reflecting on a couple of features of social networks followed by analysis of real social network data set, Twitter spam. In addition, we provide the online social networks based unsupervised scheme for automated social engineering spam with self organizing map (SOM). Through the performance evaluation, we show the detection accuracy up to 90% and the possibility of real time training for the spam detection without the manager.