• Title/Summary/Keyword: SMPMSM drive system

Search Result 7, Processing Time 0.025 seconds

Model-Free Adaptive Integral Backstepping Control for PMSM Drive Systems

  • Li, Hongmei;Li, Xinyu;Chen, Zhiwei;Mao, Jingkui;Huang, Jiandong
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1193-1202
    • /
    • 2019
  • A SMPMSM drive system is a typical nonlinear system with time-varying parameters and unmodeled dynamics. The speed outer loop and current inner loop control structures are coupled and coexist with various disturbances, which makes the speed control of SMPMSM drive systems challenging. First, an ultra-local model of a PMSM driving system is established online based on the algebraic estimation method of model-free control. Second, based on the backstepping control framework, model-free adaptive integral backstepping (MF-AIB) control is proposed. This scheme is applied to the permanent magnet synchronous motor (PMSM) drive system of an electric vehicle for the first time. The validity of the proposed control scheme is verified by system simulations and experimental results obtained from a SMPMSM drive system bench test.

Influence of Resistance Error to the Bandwidth of Back-EMF Estimation based SMPMSM Sensorless Drives (역기전력 추정 기반 SMPMSM 센서리스 드라이브에서 저항 오차가 대역폭에 미치는 영향)

  • Kim, Jae-Suk;Sul, Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.418-426
    • /
    • 2016
  • This paper analyzes the effect of resistance error to the performance of sensorless drive system of surface-mounted permanent magnet synchronous machine (SMPMSM) based on the back-EMF observer. The analysis shows that the bandwidth of the entire sensorless drive system decreased in the low-speed region when using smaller resistance value than the actual one in the back-EMF observer. Even if the back-EMF observer invokes estimation error, the entire sensorless drive system does not make any steady-state position error. These characteristics may have positive effects such as extension of the low speed limit that goes further down in the sensorless drive. The validity of the analysis is verified by the experimental setup comprising the MG set.

Model-free Deadbeat Predictive Current Control of a Surface-mounted Permanent Magnet Synchronous Motor Drive System

  • Zhou, Yanan;Li, Hongmei;Zhang, Hengguo
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.103-115
    • /
    • 2018
  • Parametric uncertainties and inverter nonlinearity exist in the permanent magnet synchronous motor (PMSM) drive system of electrical vehicles, which may lead to performance degradation or failure, and eventually threaten reliable operation. Therefore, a model-free deadbeat predictive current controller (MFDPCC) for PMSM drive systems is proposed in this study. The data-driven ultra-local model of a surface-mounted PMSM (SMPMSM) drive system that consists of parametric uncertainties and inverter nonlinearity is first established through the input and output data of a SMPMSM drive system. Subsequently, MFDPCC is designed. The performance comparisons and analyses of the proposed MFDPCC, the conventional proportional-integral controller, and the model-based deadbeat predictive current controller for SMPMSM drive systems are implemented via system simulation and experimental tests. Results show the effectiveness and technical advantages of the proposed MFDPCC.

Development of a Simulink Model for the Performance Analysis of SMPMSM Drive System (표면 부착 영구자석형 전동 시스템의 성능 해석을 위한 Simulink 모델 개발)

  • Choi, Chin-Chul;Park, Sung-Ho;Lee, Woo-Taik
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.625-626
    • /
    • 2006
  • This paper presents the new simulation model for the performance analysis of Surface-Mounted Permanent Magnet Synchronous Motor(SMPMSM) Drive System which is integrated with a controller and a power converter. To enhance reusability and compatibility, the system model is expressed by the association of independent sub-modules reflecting the real physical construction. This concept allows another independent sub-module to be effectively inserted in the model for the comprehensive analysis of larger systems such as a Machine Tool and HEV. The developed model which is composed of MATLAB/Simulink's basic blocks can rapidly analyze not only the entire behavior of system, but also the functional relationship between each components for the effective development of controller.

  • PDF

A Study on the Speed Control of PMSM for Elevator Drive (엘리베이터구동용 영구자석형 동기전동기의 속도제어에 관한 연구)

  • Yu J.S.;Kim L.H.;Choi G.J.;Yoon K.C.;Jung M.T.;Kim Y.C.;Lee S.S.;Won C.Y.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.461-466
    • /
    • 2003
  • This paper presents the speed control of the surface-mounted permanent-magnet synchronous motors (SMPMSM) for the elevator drive. The elevator motor needs to be a compact and slim type. Essentially, the proposed scheme uses a vector control algorithm for a speed and torque control. This system is implemented using a high speed 32-bit DSP (TMS320C31-50), a high-integrated logic device FPGA (EPF10K10-Tl144-3) to design compactly and Inexpensively The proposed scheme is verified through digital simulation and experiments for a three-phase 13.3kW SMPMSM as a MRL(MachineRoomless) elevator motor ill the laboratory. Finally, experiment of the test tower was performed with a 48kW PWM converter-inverter system for a high- speed elevator .

  • PDF

Vector Control of a Permanent Magnet Synchronous Motor for Elevators Using Fuzzy Controller (퍼지제어기를 이용한 엘리베이터용 영구자석형 동기 전동기 벡터제어)

  • Yu Jae-Sung;Hwang Sun-Mo;Won Chung-Yuen;Kim Sang-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.534-542
    • /
    • 2005
  • This paper proposes the fuzzy logic based vector control method for a Surface Mounted Permanent Magnet Synchronous Motor(SMPMSM) used in the elevators. The gain of a conventional PI speed controller in the elevator drive system can not be usually set high due to mechanical resonances, therefore its performance becomes deteriorated. There have been many methods to solve above problems such as an acceleration feedback in the speed controller. However, the above methods have defects that parameter information is demanded. In this paper', a Fuzzy controller(FC) is adopted in the elevator drive system. The performance of a fuzzy controller is compared with a PI controller in the no load and load conditions by simulation and experiments.

Speed Control of Permanent Magnet Synchronous Motor for Elevator (엘리베이터구동용 영구자석형 동기전동기의 속도 제어)

  • Won, Chung-Yuen;Yu, Jae-Sung;Kim, Jin-Hong;Jun, Bum-Su;Hwang, Sun-Mo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.74-82
    • /
    • 2004
  • This paper describes the speed control of the surface-mounted permanent-magent synchronous motors (SMPMSNM) for elevator drive. The elevator motor needs to be a compact and slim type. Essentially, the proposed scheme uses a vector control algorithm for a speed and torque control and Anti-windup technique is adopted to prevent a windup phenomenon. This system is implemented using a high speed 32-bit DSP (TMS320C31-50), a high-integrated logic device FPGA(EPF10K10TI144-3) to design compactly and inexpensively. The proposed scheme is verified by the results through digital simulation and experiments for a three-phase 13.3[kW] SMPMSM as a MRL(MachineRoomLess) elevator motor in the laboratory.