• Title/Summary/Keyword: SMOKE model

Search Result 336, Processing Time 0.046 seconds

A Numerical Study on Effective Smoke-Control System of a Rescue Station in a Tunnel Fire (터널내 열차 화재시 효과적인 구난역 제연 설비를 위한 수치 해석 연구)

  • Yang, Sung-Jin;Won, Chan-Shik;Hur, Nahm-Keon;Cha, Chul-Hyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.575-578
    • /
    • 2006
  • In designing smoke-control system of rescue station in train tunnel, a purpose is to prevent a disaster by proposing the jet fan operation together with smoke-control curtain in tunnel fire. This study has investigated the relationship of the Heat Release Rate(HRR) and a adequate ventilation velocity to control the fire propagation in tunnel fire, and has improved the effect of the smoke-control curtain on preventing the flow of pollutants. In this study, Computational Fluid Dynamics(CFD) simulations with ST AR-CD(ver 3.24) were carried out on predicting the fire spreading and the flow of pollutants, considering jet fan operations and effect of smoke-control curtain. Our simulation domain is the full scale model of the 'DAEGWALLYEONG' 1st tunnel. The results represent that ventilation operation can control the fire spreading and pollutants effectively to prevent a disaster.

  • PDF

Design for Pressurizing System about Vestibule by Stack Effect & Engineering Analysis - Focused on Case Study - (굴뚝효과와 공학적분석에 의한 부속실 가압시스템 설계 - 사례를 중심으로 -)

  • Kim, Yong-Kwang
    • Fire Science and Engineering
    • /
    • v.23 no.4
    • /
    • pp.145-153
    • /
    • 2009
  • We are generally applicate smoke control only vestibule about special escape staircase, it is one of some smoke control model of NFSC 501A. But there are some point at issue in this system. The smoke control system on supervision field of writer is smoke control only vestibule same as the other resemble field. Writer studied in the concrete to find a solution at this issue, and derived a conclusion the most reasonable system on the field is "same time smoke control for staircase and vestibule" by the engineering analysis considering stack effect.

Ventilation Effects on Smoke Behavior in Rescue Station for Tunnel Fires (철도터널 화재시 구난역 내의 연기거동에 미치는 배연효과에 관한 수치연구)

  • Jang, Won-Cheol;Kim, Dong-Woon;Ryou, Hong-Sun;Lee, Seong-Hyuk
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2130-2138
    • /
    • 2008
  • The present study investigates the ventilation effects on smoke spreading characteristics in railway tunnels with the rescue stations. Experiments were carried out for n-heptane pool fires with a square length 4 cm at different fire locations, and the heat release rates (HRR) were obtained by the measurement of burning rates. In addition, using the commercial code (FLUENT), the present article presents numerical results for smoke behavior in railway tunnels with rescue station, and it uses the MVHS (Modified Volumetric Heat Source) model for estimation of combustion products resulting from the fire source determined from the HRR measurement. As a result, it is found that smoke propagation is prevented successfully by the fire doors located inside the cross-passages and especially, the smoke behavior in the accident tunnel can be controlled through the ventilation system because of substantial change in smoke flow direction in the cross-passages.

  • PDF

Study on Smoke Prediction in Heavy-duty Diesel Engine (대형 디젤기관에서 매연가스 예측에 관한 연구)

  • Baik, Doo-Sung;Lee, Jong-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.865-870
    • /
    • 2008
  • The effects of exhaust gas recirculation (ECR) on smoke emissions in heavy duty diesel engine are numerically studied by using KIVA-3V CFD code. For the analysis, RNG k-$\varepsilon$ turbulence model was given as a governing equation, and mathematical models of Tab, Wave, Watkins-Park, Nagle-Strikland were applied to describe physical process of droplet breakup, atomization, wall impingement and smoke respectively.

Modeling of Smoke Dispersion through a Long Vertical Duct (장대 수직 환기구를 통한 매연 확산의 모델링 연구)

  • Yoon, Sung-Wook
    • Tunnel and Underground Space
    • /
    • v.13 no.4
    • /
    • pp.287-293
    • /
    • 2003
  • A long vertical duct is an essential installation for extracting smoke to the ground level when a fire occurs in an underground space. Due to the limitations of its basic assumptions, the existing two-layer zone model is unsuitable to model smoke dispersion through a long vertical duct. Therefore, an assessment was made to investigate the applicability of the field model, which is based on the computational fluid dynamics (CFD). A similar configuration to the published experimental work was modeled to test the validity. It is clear that under a consistent decision criterion based on the mass fraction, the field model (CFD) is able to predict that the diffusion front progresses up the shaft with exactly the same rate as that in the empirical correlation equation. This result is for better than the mathematically obtained equations in previously published research. Therefore, it can be said that the field model is an excellent option to predict the smoke dispersion through the long vertical shaft.

Real-time Smoke Detection Based on Colour Information, Morphological and Dynamic Features of the Smoke (연기의 색 정보, 형태학적 및 동적 특징 기반의 실시간 연기 검출)

  • Kim, Hyun-Tae;Park, Jang-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.1
    • /
    • pp.21-26
    • /
    • 2015
  • In this paper, we propose a system which can detect the smoke in real time from the high-quality IP camera. For real-time processing, open directly the RTSP streams transmitted from the IP camera using the library FFmpeg as opening a video file. To recognize smoke, color information and morphological characteristics of smoke, as well as the dynamic characteristics of the smoke also considered for candidate regions. To combine the characteristics of the various smoke effectively, the Adaboost algorithm, was used as the boosting algorithm finally. Through the experiments with input videos from IP camera, the proposed algorithms were useful to detect smokes.

A Numerical Study for the Operation of Partial Smoke Extraction System in Tunnel Fire (터널화재시 부분배연설비의 운영방안을 위한 수치해석적 연구)

  • Yoo, Yong-Ho;Lee, Eui-Ju;Shin, Hyun-Jun;Shin, Han-Chol
    • Fire Science and Engineering
    • /
    • v.20 no.2 s.62
    • /
    • pp.72-79
    • /
    • 2006
  • The objective of this study is to analyze the smoke extraction efficiency using by the partial extraction system with CFD simulation for case of tunnel fire. The Comparison of CFD results with the preceding scaled model test results, it is equal to the smoke extraction efficiency and smoke stratification in tunnel by the partial smoke extraction system (distributed damper). It shows that the smoke extraction efficiency is increased about 7% by the distributed damper which is opened near fire, compare with the distributed damper which is all opened. The case of the fire occurs on a traffic jam in a tunnel, it is proposed that the operating method of partial smoke extraction system for the escaping passengers.

Numerical Investigation on Fire of Stage in Theater: Effects of Natural Smoke Vent Area and Fire Source Location (공연장 무대부 화재에 대한 전산해석 연구: 자연 배연구 면적과 화원 위치 영향)

  • Park, Min Yeong;Lee, Chi Young
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.1
    • /
    • pp.1-11
    • /
    • 2022
  • This numerical study investigates the effects of the size of the natural smoke vent area (10% and 1% of the floor area) and the location of the fire source (i.e., at the side and center of the stage) on the temperature distribution in the compartment and velocity distribution and mass flow rate of flow through a natural smoke vent for a reduced-scale model of a theater stage. Then, the mass flow rate of outflow through the natural smoke vent in the event of a fire for a real-scale theater stage was examined. The case with the larger natural smoke vent area and central fire source location showed lower temperature distributions and higher mass flow rates of outflow and inflow than the case with the smaller natural smoke vent area and side fire source location. The trends of the temperature distributions were closely related to those of the mass flow rates for the outflow and inflow. Additionally, the case with the larger natural smoke vent area and central fire source location exhibited the most non-uniform flow velocity distribution in all cases tested. A bidirectional flow, in which the outflow and inflow occur simultaneously, was observed through the natural smoke vent. In the event of a fire situation in a real-scale theater stage, it was predicted that the case with the larger natural smoke vent area and central fire source location would have a mass flow rate of outflow that is 43.53 times higher than that of the case with the smaller natural smoke vent area and side fire source location. The present results indicate that the natural smoke vent location should be determined by considering the location in a theater stage where a fire can occur.

아트리움 공간에 있어서 화재에 의한 연기 유동에 관한 수치해석적 연구

  • 노재성;유홍선;정연태
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1997.11a
    • /
    • pp.43-48
    • /
    • 1997
  • The smoke filling process for the atrium space containing a fire source is simulated using two types of deterministic fire modus: Zone model and Field model. The zone mode used is the CFAST(version 1.6) mode developed at the Building and Fire Research laboratories, NIST in the USA. The lied model is a self-developed fire field model based on Computational Fluid Dynamics(CFD) theories. This article is focused on finding out the smoke movement and temperature distribution in atrium space which is cubic in shape. A computational procedure for predicting velocity and temperature distribution in fro-induced flow is based on the solution, in finite volume method and non-staggered grid system, of 3-dimensional equations for the conservation of mass, momentum, energy, species and so forth. The fire model i. e. Zone model and Field model predicted similar results for Ire clear height and the smoke layer temperature.

  • PDF

A Study of Smoke Movement in Tunnel Fire with Natural Ventilation (자연 배기 터널에서의 연기 거동에 관한 연구)

  • Kim, Sung-Chan;Lee, Sung-Ryong;Kim, Choong-Ik;Ryou, Hong-Sun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.976-982
    • /
    • 2002
  • In this study, smoke movement in tunnel fire with natural ventilation shaft has been investigated with various size of fire source. Gasoline pool fire with different size of diameter - 73mm, 100mm, 125mm and 154mm - was used to describe fire source. Experimental data is obtained with 1/20 model tunnel test and its results are compared with numerical results. The computation were carried out using FDS 1.0 which is a field model of fire-driven now. Temperature profiles between measured and predicted data are compared along ceiling and near the ventilation shaft. Both results are in good agreement with each other. In order to evaluating a safe egress time in tunnel fire, horizontal smoke front velocity was measured in model tunnel fire tests and those are compared with numerical results. According to the presence or absence of natural ventilation shaft, ventilation effect are estimated quantitatively. Finally, this paper shows that computational fluid dynamics(CFD) is applicable to predict fire-induced flow in tunnel.