• Title/Summary/Keyword: SMOKE model

Search Result 340, Processing Time 0.034 seconds

Performance Test of 21AFR Lean Fuel Module at Low and High Operating Conditions (21AFR 희박연료모듈의 저압 및 고압 연소성능시험)

  • Han, Yeoung-Min;Ko, Young-Sung;Yang, Soo-Seok;Lee, Dae-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.8
    • /
    • pp.1132-1137
    • /
    • 2002
  • In this paper, the test results of the combustion for 2 IAFR lean fuel models are described. The need for the low emission combustor has been issued from the concern on the increase of green house and the destruction of ozone layer. To evaluate the flow and combustion performance of newly designed 21AFR lean modules, the hydraulic tests in stereolithographic airflows models, the low pressure combustion tests in three injectors model for weak extinction and ignition and the high pressure combustion tests in single sector for NOx, SAE and efficiency are performed. The low pressure tests reveal that the governing parameters in weak extinction and ignition at atmospheric condition are prefilmer length, swirl flow rotation direction, secondary swirl angle and flow split. As a result of combustion test at high pressure, the efficiency and smoke level are satisfied with performance targets, but EINOx of 17.8 is higher than target value of 13.1 The high pressure tests show that the main parameters influenced on NOx are primary swirl angle, swirl flow rotation direction, heatshield exit angle and liner mixing hole location.

Flow Visualization for a Dragonfly Type Wing (잠자리 유형 날개에 대한 흐름 가시화)

  • Kim, Song-Hwak;Kim, Hyun-Seok;Chang, Jo-Won;Boo, Joon-Hong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1586-1591
    • /
    • 2004
  • Flow visualization experiments have been performed to investigate the effects of phase lag, reduced frequency qualitatively by examining wake pattern on a dragonfly type wing. The model was built with a scaled-up, flapping wings, composed of paired wings with fore- and hindwing in tandem, that mimicked the wing form of a dragonfly. The present study was conducted by using the smoke-wire technique, and an electronic device was mounted to find the exact positional angle of wing below the tandem wings, which amplitude is ranged from $-16.5^{\circ}$ to $+22.8^{\circ}$. Phase lag applied on the wings is $0^{\circ}$, $90^{\circ}$, $180^{\circ}$ and $270^{\circ}$. The reduced frequency is 0.15, 0.3 and 0.45 to investigate the effect of reduced frequency. It is inferred through observed wake pattern that the phase lag clearly plays an important role in the wake structures and in the flight efficiency as changing the interaction of wings. The reduced frequency also is closely related to wake pattern and determines flight efficiency.

  • PDF

COMPUTER SIMULATION OF TRACTOR PERFORMANCE WITH REGARD TO ENERGY SAVING AND POLLUTION REDUCING

  • Zou, Cheng;Sakai, Jun;Nagata, Masateru
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1110-1116
    • /
    • 1993
  • A study on optimum operation performances of power efficiency, economy and exhaust emissions for a tractor was conducted. A mathematical model of multiple degree polynomial equation was applied to established the function of solid multiple parameter curves for specific fuel consumption (ge), cabon monoxide (CO) ,hydrcarbons (HC) and cabonaceous smoke (Rb). The optimum operation theorems for economy operation indicated by ge and for exhaust emissions described by Co , HC and Rb were obtained from analytical method and performance test data. The optimum operation theorems could exhibit optimum operation working points, curves, and regions. The optimum matching relations of engine speed and transmission parameters were analyzed by using computer simulation methods in accordance with the tractor specifications , actual farm working conditions in a typical drawbar pull work such as plowing , the optimum operation objective function, the ideal transmission ratio, practical gear shif ing positions and practical travel speed of the tractor TN55 medel. The results of the anlayzes indicated clearly that the optimum power efficient operation, energy saving and pollution reducing would be realized if the tractor would be operated according to theoptimum operation methods.

  • PDF

Video Based Fire Detection Algorithm using Gaussian Mixture Model (Gaussian 혼합모델을 이용한 영상기반 화재검출 알고리즘)

  • Park, Jang-Sik;Kim, Hyun-Tae;Yu, Yun-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.2
    • /
    • pp.206-211
    • /
    • 2011
  • In this paper, a fire detection algorithm based on video processing is proposed. At the first stage, background image extracted from CCTV video input signal, and then foreground image were separated by differencing CCTV input signal from background image. At the second stage, candidated area were extracted by using color information from foreground image. At the final stage, smoke or flame characteristic area were separated by using Gaussian mixture modeling applied to candidated area, and then fire can be detected. Through real experiments at the inner room, it is shown that the proposed system works well.

Influence of Knowledge about Lung Cancer, Attitude and Preventive Health Behavior about Cancer on Nicotine Dependency in Smoking Male College Students (흡연 남자 대학생의 폐암에 대한 지식, 암에 대한 태도 및 암에 대한 예방적 건강행위가 니코틴 의존도에 미치는 영향)

  • Kim, Nam-Jo;Hong, Hae-Sook
    • Journal of Korean Biological Nursing Science
    • /
    • v.18 no.4
    • /
    • pp.213-220
    • /
    • 2016
  • Purpose: The aim of this study was to identify the influence of knowledge, attitude and preventive health behavior of cancer on nicotine dependency in male college students who have a habit of smoking. Methods: In this study, a cross-sectional survey design was adopted for the 254 male college students who smoke in D and S city. The data was analyzed for descriptive statistics, t-test, Pearson's correlation coefficient and multiple regression analysis using the SPSS 20.0 program. Results: Knowledge about lung cancer (${\beta}=-.407$, p<.001), preventive health behaviors about cancer (${\beta}=-.223$, p<.001) and the smoking period ($5years{\leq}$) (${\beta}=.198$, p=.001) were identified as the factors influencing nicotine dependency of the subjects. The model explained 33% of variance in nicotine dependency (F=20.49, p<.001). Conclusion: The results suggest that anti-smoking educators should include the strategies to increase knowledge about lung cancer and preventive health behaviors of cancer, and to reduce the smoking period in their smoking cessation program.

Characteristics of Fire-induced Thermal-Flowfields in an Underground Utility Tunnel with Ventilation (화재 발생시 환기방식에 따른 지하공동구내 열유동 특성 연구)

  • Kim, Hong-Sik;Hwang, In-Ju;Kim, Yun-Je
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1845-1850
    • /
    • 2003
  • The underground utility tunnels are important facility as a mainstay of country because of communication developments. The communication and electrical duct banks as well as various utility lines for urban life are installed in the underground utility tunnel systems. If a fire breaks out in this life-line tunnel, the function of the city will be discontinued and the huge damages are occurred. In order to improve the safety of life-line tunnel systems and the fire detection, the behaviors of the fire-induced smoke flow and temperature distribution are investigated. In this study we assumed that the fire is occurred at the contact or connection points of cable. Numerical calculations are carried out using different velocity of ventilation in utility tunnel. The fire source is modeled as a volumetric heat source. Three-dimensional flow and thermal characteristics in the underground tunnel are solved by means of FVM (Finite Volume Method) using SIMPLE algorithm and standard ${\kappa}-{\varepsilon}$ model for Reynolds stress terms. The numerical results of the fire-induced flow characteristics in an underground utility tunnel with different velocity of ventilation are graphically prepared and discussed.

  • PDF

Study on the Unsteady Wakes Past a Square Cylinder near a Wall

  • Kim Tae Yoon;Lee Bo Sung;Lee Dong Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1169-1181
    • /
    • 2005
  • Experimental and numerical studies on the unsteady wake field behind a square cylinder near a wall were conducted to find out how the vortex shedding mechanism is correlated with gap flow. The computations were performed by solving unsteady 2-D Incompressible Reynolds Averaged Navier-Stokes equations with a newly developed ${\epsilon}-SST$ turbulence model for more accurate prediction of large separated flows. Through spectral analysis and the smoke wire flow visualization, it was discovered that velocity profiles in a gap region have strong influences on the formation of vortex shedding behind a square cylinder near a wall. From these results, Strouhal number distributions could be found, where the transition region of the Strouhal number was at $G/D=0.5{\sim}0.7$ above the critical gap height. The primary and minor shedding frequencies measured in this region were affected by the interaction between the upper and the lower separated shear layer, and minor shedding frequency was due to the separation bubble on the wall. It was also observed that the position (y/G) and the magnitude of maximum average velocity $(u/u_{\infty})$ in the gap region affect the regular vortex shedding as the gap height increases.

Experimental Study on Heat Flow According to the Wind Velocity in an Underground Life Space (지하생활공간 화재시 풍속에 따른 열유동 특성 연구)

  • Kim, Young-No;Suk, Chang-Mok;Kim, Wha-Jung
    • Fire Science and Engineering
    • /
    • v.21 no.3
    • /
    • pp.61-68
    • /
    • 2007
  • The purpose of this study analyzes heat flows and fire behavior through a reduced-scale model experiments about change of wind velocity in underground life space. When the wind velocity is increased the temperature rise time of the fire room was risen fast. And temperature of fire room was increased. And increase of wind velocity displayed maximum temperature at an opening of the fire room. Heat flows by fire spread increase size of smoke occurrence and flame, and displayed high temperature distribution in passageway than inside of neighborhood department promoting eddy flow spread as wind velocity increases. Finally, heat flows are decided by wind and wind velocity at fire of underground life space, and Wind velocity increases, temperature increase and decrease could confirm that is gone fast.

Fire Risk Assessment for Subway Station According to Supply and Exhaust Conditions (지하철 승강장 급배기 조건에 따른 화재 위험성 평가)

  • Kim, Ha-Young;Rie, Dong-Ho;Kim, Jung-Yup
    • Fire Science and Engineering
    • /
    • v.22 no.5
    • /
    • pp.29-34
    • /
    • 2008
  • In this research, to establish the emission for the people who are clearing out, through the numerical analysis using the CFD model, the dangerousness has been investigated in the various emission conditions in a station platform. As a result of research, it is found out that the temperature variation falls between 65.37% and 74.97% to compare without installation of platform screen doors. In the addition, with the supply mode or push-pull mode, the warm current is generated in the platform so the temperature and the layer of smoke are stirred up and felled off. It will make the dangerousness when the people escape. Therefore, when the capacity of emission and the space of platform is set up, the design regards the properties of the fire emission.

ARPES study of Ultrathin Fe Grown on Cu (001) surface

  • Poornima, L.;Oh, Y.R.;Park, Y.S.;Kim, W.;Kim, C.G.;Hong, J.;Hwang, Chan-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.350-350
    • /
    • 2011
  • The spin structure of Fe over layers on Cu (001), especially in region II is one of the unsolved problem for many years. We study the out - of - plane (OP) Fermi surfaces (FSs) of 7 monolayer Fe/Cu (001) films using angle resolved photo emission spectroscopy (ARPES). Ultrathin Fe was grown on Cu (001) substrate at room temperature and the experimental measurements were carried out at room temperature and low temperature. Fermi surfaces measured about $\frac{1}{4}$ of the Brillouin Zone (BZ) using photon energies ranging from 170 eV to 280 eV. Our results confirmed that ferromagnetic signal at 7 ML Fe on Cu (001) is nearly zero. These results are consistent with our recent x-ray magnetic circular dichroism (XMCD) and surface magneto - optic Kerr effect (SMOKE) experiments. Based on our observations we have made a simple model of this system, which explains all the experimental results.

  • PDF