• Title/Summary/Keyword: SMAD phosphatase

Search Result 14, Processing Time 0.021 seconds

Melanin extract from Gallus gallus domesticus promotes proliferation and differentiation of osteoblastic MG-63 cells via bone morphogenetic protein-2 signaling

  • Yoo, Han-Seok;Chung, Kang-Hyun;Lee, Kwon-Jai;Kim, Dong-Hee;An, Jeung Hee
    • Nutrition Research and Practice
    • /
    • v.11 no.3
    • /
    • pp.190-197
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Gallus gallus domesticus (GD) is a natural mutant breed of chicken in Korea with an atypical characterization of melanin in its tissue. This study investigated the effects of melanin extracts of GD on osteoblast differentiation and inhibition of osteoclast formation. MATERIALS/METHODS: The effects of the melanin extract of GD on human osteoblast MG-63 cell differentiation were examined by evaluating cell viability, osteoblast differentiation, and expression of osteoblast-specific transcription factors such as bone morphogenetic protein 2 (BMP-2), small mothers against decapentaplegic homologs 5 (SMAD5), runt-related transcription factor 2 (RUNX2), osteocalcin and type 1 collagen (COL-1) by reverse transcription-polymerase chain reaction and western blotting analysis. We investigated the inhibitory effect of melanin on the osteoclasts formation through tartrate-resistant acid phosphatase (TRAP) activity and TRAP stains in Raw 264.7 cell. RESULTS: The melanin extract of GD was not cytotoxic to MG-63 cells at concentrations of $50-250{\mu}g/mL$. Alkaline phosphatase (ALP) activity and bone mineralization of melanin extract-treated cells increased in a dose-dependent manner from 50 to $250{\mu}g/mL$ and were 149% and 129% at $250{\mu}g/mL$ concentration, respectively (P < 0.05). The levels of BMP-2, osteocalcin, and COL-1 gene expression were significantly upregulated by 1.72-, 4.44-, and 2.12-fold in melanin-treated cells than in the control cells (P < 0.05). The levels of RUNX2 and SMAD5 proteins were higher in melanin-treated cells than in control vehicle-treated cells. The melanin extract attenuated the formation of receptor activator of nuclear factor kappa-B ligand-induced TRAP-positive multinucleated RAW 264.7 cells by 22%, and was 77% cytotoxic to RAW 264.7 macrophages at a concentration of $500{\mu}g/mL$. CONCLUSIONS: This study provides evidence that the melanin extract promoted osteoblast differentiation by activating BMP/SMADs/RUNX2 signaling and regulating transcription of osteogenic genes such as ALP, type I collagen, and osteocalcin. These results suggest that the effective osteoblastic differentiation induced by melanin extract from GD makes it potentially useful in maintaining bone health.

Effect of Acer tegmentosum Maxim. extract on differentiation of osteoblastic Primary calvarial osteoblasts cells (조골세포의 분화에 산겨릅나무 추출물이 미치는 영향)

  • Oh, Tae Woo;Shim, Ki-Shuk;Kim, Kwang-Youn;Cho, Won-Kyung;Park, Kwang Il;Ma, Jin Yeul
    • Herbal Formula Science
    • /
    • v.25 no.4
    • /
    • pp.527-536
    • /
    • 2017
  • Objectives : The present study, to confirm the osteoblast differentiation effects of Acer tegmentosum Maxim. (AT) extract. Methods : In this experiment, cell viability, Alizarin red S assay, and Alkaline phosphatase (ALP) activity with AT extract (50, $100{\mu}g/m{\ell}$). Also, we studied the expression of differentiation regulator with AT extract in primary calvarial osteoblasts cells (pOB). Results : As a result of AT treatment, we determined that AT extract stimulates ALP activity and alizarin red activities in the pOB cells for mineralization for 18 days. Moreover, these factors increasing osteogenic markers such as Runt-related transcription factor2 ($Run{\times}2$), osteocalcin (OC), osteopontin, osterix, smad1, smad5, activating transcription factor4 (ATF4) and collagen type I alpha 1. Conclusions : These results indicate that AT extract have effect on bone through the promotion of osteoblastic differentiation, suggesting that it could be used for the treatment of bone diseases.

Longan (Dimocarpus longan Lour.) Fruit Extract Stimulates Osteoblast Differentiation via Erk1/2-Dependent RUNX2 Activation

  • Park, Seoyoung;Kim, Joo-Hyun;Son, Younglim;Goh, Sung-Ho;Oh, Sangtaek
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.6
    • /
    • pp.1063-1066
    • /
    • 2016
  • Longan (Dimocarpus longan Lour.) has been used as a traditional oriental medicine and possesses a number of physiological activities. In this study, we used cell-based herbal extract screening to identify longan fruit extract (LFE) as an activator of osteoblast differentiation. LFE up-regulated alkaline phosphatase (ALP) activity, induced mineralization, and activated Runx2 gene expression in MC3T3-E1 cells. Furthermore, treatment of MC3T3-E1 cells with LFE promoted the phosphorylation of extracellular signal-regulated kinase1/2 (Erk1/2); however, abrogation of Erk1/2 activation with PD98059 resulted in down-regulation of the phospho-SMAD1/5/8 and Runx2 levels, which in turn reduced the ALP activity. Our findings suggest that LFE exerts its osteogenic activity through activation of the ERK signaling pathway and may have potential as an herbal therapeutic or a preventive agent for the treatment of osteoporosis.

Isopsoralen Induces Differentiation of Prechondrogenic ATDC5 Cells via Activation of MAP Kinases and BMP-2 Signaling Pathways

  • Li, Liang;Eun, Jae-Soon;Nepal, Manoj;Ryu, Jae-Ha;Cho, Hyoung-Kwon;Choi, Bo-Yun;Soh, Yun-Jo
    • Biomolecules & Therapeutics
    • /
    • v.20 no.3
    • /
    • pp.299-305
    • /
    • 2012
  • Endochondral bone formation is the process by which mesenchymal cells condense to become chondrocytes, which ultimately form new bone. The process of chondrogenic differentiation and hypertrophy is critical for bone formation and as such is regulated by many factors. In this study, we aimed to indentify novel factors that regulate chondrogenesis. We investigated the possible role of isopsoralen in induction of chondrogenic differentiation in clonal mouse chondrogenic ATDC5 cells. Isopsoralen treatment stimulated the accumulation of cartilage nodules in a dose-dependent manner. Further, ATDC5 cells treated with isopsoralen were stained more intensely with Alcian blue than control cells, suggesting that isopsoralen increases the synthesis of matrix proteoglycans. Similarly, isopsoralen markedly induced the activation of alkaline phosphatase activity compared with control cells. Isopsoralen enhanced the expressions of chondrogenic marker genes such as collagen II, collagen X, OCN, Smad4 and Sox9 in a time-dependent manner. Furthermore, isopsoralen induced the activation of extracellular signal-regulated kinase (ERK) and p38 MAP kinase, but not that of c-jun N-terminal kinase (JNK). Isopsoralen significantly enhanced the protein expression of BMP-2 in a time-dependent manner. PD98059 and SB 203580, inhibitors of ERK and p38 MAPK, respectively, decreased the number of stained cells treated with isopsoralen. Taken together, these results suggest that isopsoralen mediates a chondromodulating effect by BMP-2 or MAPK signaling pathways, and is therefore a possible therapeutic agent for bone growth disorders.