• 제목/요약/키워드: SMA wire actuator

검색결과 30건 처리시간 0.027초

형상기억합금 선재를 이용한 굽힘 작동기 설계 (Design of Bending Actuator using Shape Memory Alloy Wire)

  • 허석;황도연;박훈철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.210-215
    • /
    • 2008
  • This paper presents an experimental study on a bending actuator with a shape memory alloy wire. In this study, we introduced design process and experimental result of the bending actuator. The bending actuator consists of a SMA wire, springs, and a glass/epoxy strip. In the bending actuator, springs were used to restore the SMA wire to its initial shape right after actuation. To obtain properties of the SMA wire, DSC test was performed and the behavior of the SMA wire under different loadings was observed. Finally, the proposed bending actuator shows reasonable actuation behavior with relatively lower power consumption, fast response and effective efficiency.

  • PDF

Design and control of a proof-of-concept active jet engine intake using shape memory alloy actuators

  • Song, Gangbing;Ma, Ning;Li, Luyu;Penney, Nick;Barr, Todd;Lee, Ho-Jun;Arnold, Steve
    • Smart Structures and Systems
    • /
    • 제7권1호
    • /
    • pp.1-13
    • /
    • 2011
  • It has been shown in the literature that active adjustment of the intake area of a jet engine has potential to improve its fuel efficiency. This paper presents the design and control of a novel proof-of-concept active jet engine intake using Nickel-Titanium (Ni-Ti or Nitinol) shape memory alloy (SMA) wire actuators. The Nitinol SMA material is used in this research due to its advantages of high power-to-weight ratio and electrical resistive actuation. The Nitinol SMA material can be fabricated into a variety of shapes, such as strips, foils, rods and wires. In this paper, SMA wires are used due to its ability to generate a large strain: up to 6% for repeated operations. The proposed proof-of-concept engine intake employs overlapping leaves in a concentric configuration. Each leaf is mounted on a supporting bar than can rotate. The supporting bars are actuated by an SMA wire actuator in a ring configuration. Electrical resistive heating is used to actuate the SMA wire actuator and rotate the supporting bars. To enable feedback control, a laser range sensor is used to detect the movement of a leaf and therefore the radius of the intake area. Due to the hysteresis, an inherent nonlinear phenomenon associated with SMAs, a nonlinear robust controller is used to control the SMA actuators. The control design uses the sliding-mode approach and can compensate the nonlinearities associated with the SMA actuator. A proof-of-concept model is fabricated and its feedback control experiments show that the intake area can be precisely controlled using the SMA wire actuator and has the ability to reduce the area up to 25%. The experiments demonstrate the feasibility of engine intake area control using an SMA wire actuator under the proposed design.

형상기억합금의 양방향효과를 이용한 두개의 형상기억합금선이 부착된 작동기의 수치해석 (Numerical Simulation of Double SMA wire Actuator Using Two-Way Shape Memory Effect of SMA)

  • 김상헌;조맹효
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.287-290
    • /
    • 2004
  • A structure using the two-way shape memory effect (TWSME) returns to its initial shape by increasing or decreasing temperature under initial residual stress. Through the thermo-mechanical constitutive equation of shape memory alloy(SMA) proposed by Lagoudas et al., we simulate the behavior of a double actuator in which two SMA wires are attached to the tip of panel under the initially given residual stress. Through the numerical results conducted in the present study, the proposed actuator device is suitable for repeated actuation. The simulation algorithm proposed in the present study can be applied extensively to the analysis of the assembled .system of SMA-actuator and host structure in the practical applications.

  • PDF

Position estimation and control of SMA actuators based on electrical resistance measurement

  • Song, Gangbing;Ma, Ning;Lee, Ho-Jun
    • Smart Structures and Systems
    • /
    • 제3권2호
    • /
    • pp.189-200
    • /
    • 2007
  • As a functional material, shape memory alloy (SMA) has attracted much attention and research effort to explore its unique properties and its applications in the past few decades. Some of its properties, in particular the electrical resistance (ER) based self-sensing property of SMA, have not been fully studied. Electrical resistance of an SMA wire varies during its phase transformation. This variation is an inherent property of the SMA wire, although it is highly nonlinear with hysteresis. The relationship between the displacement and the electrical resistance of an SMA wire is deterministic and repeatable to some degree, therefore enabling the self-sensing ability of the SMA. The potential of this self-sensing ability has not received sufficient exploration so far, and even the previous studies in literature lack generality. This paper concerns the utilization of the self-sensing property of a spring-biased Nickel-Titanium (Nitinol) SMA actuator for two applications: ER feedback position control of an SMA actuator without a position sensor, and estimation of the opening of a SMA actuated valve. The use of the self-sensing property eliminates the need for a position sensor, therefore reducing the cost and size of an SMA actuator assembly. Two experimental apparatuses are fabricated to facilitate the two proposed applications, respectively. Based on open-loop testing results, the curve fitting technique is used to represent the nonlinear relationships between the displacement and the electrical resistance of the two SMA wire actuators. Using the mathematical models of the two SMA actuators, respectively, a proportional plus derivative controller is designed for control of the SMA wire actuator using only electrical resistance feedback. Consequently, the opening of the SMA actuated valve can be estimated without using an extra sensor.

Morphing Wing Mechanism Using an SMA Wire Actuator

  • Kang, Woo-Ram;Kim, Eun-Ho;Jeong, Min-Soo;Lee, In;Ahn, Seok-Min
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권1호
    • /
    • pp.58-63
    • /
    • 2012
  • In general, a conventional flap on an aircraft wing can reduce the aerodynamic efficiency due to geometric discontinuity. On the other hand, the aerodynamic performance can be improved by using a shape-morphing wing instead of a separate flap. In this research, a new flap morphing mechanism that can change the wing shape smoothly was devised to prevent aerodynamic losses. Moreover, a prototype wing was fabricated to demonstrate the morphing mechanism. A shape memory alloy (SMA) wire actuator was used for the morphing wing. The specific current range was measured to control the SMA actuator. The deflection angles at the trailing edge were also measured while various currents were applied to the SMA actuator. The trailing edge of the wing changed smoothly when the current was applied. Moreover, the deflection angle also increased as the current increased. The maximum frequency level was around 0.1 Hz. The aerodynamic performance of the deformed airfoil by the SMA wire was analyzed by using the commercial program GAMBIT and FLUENT. The results were compared with the results of an undeformed wing. It was demonstrated that the morphing mechanism changes the wing shape smoothly without the extension of the wing skin.

A SMA-based actuation system for a fish robot

  • Le, Chan Hoang;Nguyen, Quang Sang;Park, Hoon Cheol
    • Smart Structures and Systems
    • /
    • 제10권6호
    • /
    • pp.501-515
    • /
    • 2012
  • We design and test a shape memory alloy (SMA)-based actuation system that can be used to propel a fish robot. The actuator in the system is composed of a 0.1 mm diameter SMA wire, a 0.5 mm-thick glass/epoxy composite strip, and a fixture frame. The SMA wire is installed in a pre-bent composite strip that provides initial tension to the SMA wire. The actuator can produce a blocking force of about 200 gram force (gf) and displacement of 3.5 mm at the center of the glass/epoxy strip for an 8 V application. The bending motion of the actuator is converted into the tail-beat motion of a fish robot through a linkage system. The fish robot is evaluated by measuring the tail-beat angle, swimming speed, and thrust produced by the tail-beat motion. The tail-beat angle is about $20^{\circ}$, the maximum swimming speed is about 1.6 cm/s, and the measured average thrust is about 0.4 gf when the fish robot is operated at 0.9 Hz.

Design and investigation of a shape memory alloy actuated gripper

  • Krishna Chaitanya, S.;Dhanalakshmi, K.
    • Smart Structures and Systems
    • /
    • 제14권4호
    • /
    • pp.541-558
    • /
    • 2014
  • This paper proposes a new design of shape memory alloy (SMA) wire actuated gripper for open mode operation. SMA can generate smooth muscle movements during actuation which make them potentially good contenders in designing grippers. The principle of the shape memory alloy gripper is to convert the linear displacement of the SMA wire actuator into the angular displacement of the gripping jaw. Steady state analysis is performed to design the wire diameter of the bias spring for a known SMA wire. The gripper is designed to open about an angle of $22.5^{\circ}$ when actuated using pulsating electric current from a constant current source. The safe operating power range of the gripper is determined and verified theoretically. Experimental evaluation for the uncontrolled gripper showed a rotation of $19.97^{\circ}$. Forced cooling techniques were employed to speed up the cooling process. The gripper is simple and robust in design (single movable jaw), easy to fabricate, low cost, and exhibits wide handling capabilities like longer object handling time and handling wide sizes of objects with minimum utilization of power since power is required only to grasp and release operations.

복합재료 스트립과 스프링을 갖는 형상기억합금 작동기의 거동 (Behavior of a Shape Memory Alloy Actuator with Composite Strip and Spring)

  • 허석;황도연;최재원;박훈철;구남서
    • Composites Research
    • /
    • 제22권2호
    • /
    • pp.37-42
    • /
    • 2009
  • 이 논문은 형상기억합금 선재를 이용한 굽힘 작동기의 실험적인 설계방법을 다루고 있다. 제안된 굽힘 작동기는 유리섬유 프리프레그를 이용하여 만든 스트립, 스프링 그리고 형상기억합금 선재로 구성된다. 굽힘 작동기에서 스트립은 초기에 형상기억합금 선재에 초기하중을 가하기 위하여 굽힘 형태로 정되며, 스프링은 형상기억합금 선재가 작동 후 빠른 시간내에 초기 형상으로 돌아오기 위한 보조수단으로 사용된다. 먼저 형상기억합금 선재의 특성을 알아보기 위하여 시차주사열량계(DSC)를 이용한 실험, 여러 종류의 초기 하중을 가한 후 작동 성능 실험, 인장 시험, 온도 변화에 따른 기계적 거동을 조사하였다 이를 바탕으로 스트립, 스프링, 인가 전압에 의한 영향을 관찰하고 소모전력을 분석하여 굽힘 작동기를 설계하였다. 특정 조건을 갖는 굽힘 작동기는 낮은 소모전력으로 빠른 응답성능을 나다내었다.

구간 분할된 형상기억합금 와이어의 동특성에 관한 연구 (A Study of Dynamic Characteristics of Segmented Shape Memory Alloy Wire)

  • 정상화;김주환;김광호;이상희;신상문
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.329-330
    • /
    • 2006
  • The research and development of an actuator are accelerating in the robotics industry. The electricity polymer and SMA actuator are designed simply and are produced a lot of forces per unit volume. Their motions are similar to human's motion, But the repeatability of the electricity polymer actuator is lower. The reaction velocity of the SMA actuator is slow and the travel is short. In this paper, the dynamic characteristic of the segmented SMA is studied. The SMA wire is divided by using the Thermo-electric module(TEM) to control each of segments independently. The MOSFET circuit is used to supply constant currents fer the Thermo-electric module(TEM). The hysteresis and displacement of the SMA wire according to load are measured.

  • PDF

SMA을 이용한 3차원 형상제시기의 와이어프레임 구동 유닛 (Wire frame drive unit ofa SMA-based 3D shape display)

  • 추용주;김영민;송재복;박신석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.439-440
    • /
    • 2006
  • This research proposes a novel method of shape display to present 3-dimensional objects. Shape displays allow us to feel the actual volume of the object, unlike conventional 2D visual displays of 3D objects. The proposed method employs a wire frame structure to present 3D objects. The wire frame is composed of small units driven by shape memory alloy(SMA) actuators. The drive unit is analogous to the agonist-antagonist system of animal musculoskeletal systems, where the SMA actuators serve as agonist and antagonist muscles. The force in the SMA actuator is controlled by electrical current. The drive unit is equipped with the locking mechanism so that it can sustain the external force exerted by the user as well as the own weight of the wire frame structure. By controlling the current into the SMA actuator and locking mechanism, we call control the angle of the drive unit. A chain of drive units enables presentation of 2 dimensional objects. 3 dimensional presentations are possible by collecting the chains of drive units.

  • PDF