• Title/Summary/Keyword: SM520 steel

Search Result 13, Processing Time 0.019 seconds

Flexural Testing of Asymmetric Hybrid Composite Beams Fabricated from High-strength Steels (고강도강재를 적용한 비대칭 하이브리드 합성보의 휨거동 실험)

  • Jun, Su Chan;Han, Kyu Hong;Lee, Cheol Ho;Kim, Jin Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.3
    • /
    • pp.217-228
    • /
    • 2017
  • Full-scale flexural testing of asymmetric H-shape hybrid composite beams was conducted in this study. In fabricating hybrid H-shape sections, high strength steels were utilized for the bottom flange while ordinary strength steels were used for the top flange and web. With adding a fully composite floor slab, a total of 8 hybrid composite beam specimens were tested. The primary objective was to develop the asymmetric hybrid H-shape composite beams with maximized flexural efficiency and investigate their flexural behavior. Not all the hybrid composite specimens tested in this study exhibited the plastic moment and reasonable deformability. In the specimens with high-strength bottom flange, the longitudinal shear crack of the slab along the beam axis often preceded the development of beam plastic moment, although the slab was designed as fully composite. The mechanical reason for this unexpected behavior is discussed. It is emphasized that the longitudinal shear strength of composite slab should be checked in designing hybrid composite beams utilizing high strength steels like in this study.

Flexural Strength of Composite HSB Girders in Positive Moment (HSB 강합성거더 정모멘트부의 휨저항강도)

  • Cho, Eun-Young;Shin, Dong-Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.389-398
    • /
    • 2010
  • The flexural strength of composite HSB I-girders under a positive moment was investigated using the moment-curvature analysis method to evaluate the applicability of the current AASHTO LRFD design specifications to such girders. A total of 2,391 composite I-girder sections that satisfied the section proportion limits of the AASHTO LRFD specifications was generated by the random sampling technique to consider a wide range of section properties. The flexural capacities of the sections were calculated inthe nonlinear moment-curvature analysis in which the HSB600 and HSB800 steels were modeled as an elasto-plastic strain-hardening material, and the concrete, as a CEB-FIP model. The effects of the ductility ratio and the compressive strength of the concrete slab on the flexural strength of the composite girders made of HSB and SM520-TMC steels were analyzed. The numerical results indicated that the current AASHTO LRFD equation can be used to calculate the flexural strength of composite girders made of HSB600 steel. In contrast, the current AASHTO LRFD equation was found to be non-conservative in its prediction of the flexural strength of composite HSB800 girders. Based on the numerical results of this study for 2,391 girders, a new design equation for the flexural strength of composite HSB800 girders in a positive moment was proposed.

Prediction on the fatigue life of butt-welded specimens using artificial neural network

  • Kim, Kyoung Nam;Lee, Seong Haeng;Jung, Kyoung Sup
    • Steel and Composite Structures
    • /
    • v.9 no.6
    • /
    • pp.557-568
    • /
    • 2009
  • Fatigue tests for extremely thick plates require a great deal of manufacturing time and are expensive to perform. Therefore, if predictions could be made through simulation models such as an artificial neural network (ANN), manufacturing time and costs could be greatly reduced. In order to verify the effects of fatigue strength depending on the various factors in SM520C-TMC steels, this study constructed an ANN and conducted the learning process using the parameters of calculated stress concentration factor, thickness and input heat energy, etc. The results showed that the ANN could be applied to the prediction of fatigue life.