• Title/Summary/Keyword: SM45C Steel

Search Result 156, Processing Time 0.033 seconds

Effect of Deposition Time on the Properties of TiN-coated Layer of SM45C Steel by Arc Ion Plating (AIP법에서 증착시간이 SM45C 강의 TiN 코팅층 성질에 미치는 영향)

  • Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.44-50
    • /
    • 2011
  • The effect of deposition time in arc ion plating on surface properties of the TiN-coated SM45C steel is presented in this paper. The surface roughness, micro-particle, micro-hardness, coated thickness, atomic distribution of TiN, and adhesion strength are measured for various deposition times. It has been shown that the deposition time has a considerable effect on the micro-hardness, the coated thickness, and the atomic distribution of TiN of the SM45C steels but that it has little influence on the surface roughness and adhesion strength.

Optimization of Spheroidizing Annealing Conditions in SM45C Steel (SM45C강의 구상화 어닐링조건 최적화 연구)

  • Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.3
    • /
    • pp.149-155
    • /
    • 2006
  • The effects of eight types of spheroidizing annealing conditions including annealing temperature, annealing time, cooling rate, and gas atmosphere in the annealing furnace on the microstructure were determined in SM45C steel which has been widely used for automotive parts. The well-developed spheroidized structure and minimum hardness were obtained when the steel was heat-treated 6 hours at $740^{\circ}C$, cooled to $710^{\circ}C$ at a cooling rate of $24^{\circ}C/h$, and then kept for 7 hours at the $710^{\circ}C$ followed by air cooling. In order to increase the productivity and to save the manufacturing cost, it is desirable to apply a faster cooling rate in the spheroidizing annealing. It was found that air cooling was the fastest cooling rate applicable to the SM45C steel. The steel heat treated in air showed the decarburized layer of about $110{\mu}m$ in thickness at the surface of the specimen, resulting in serious problems in the quality of the quenched product.

ButWelding Characteristics of SM45C and SUS 304 using a Nd:YAG laser (SM45C와 SUS304의 Nd:YAG 레이저 맞대기용접특성)

  • Yoo, Young-Tae;Ro, Kyoung-Bo;Shin, Ho-Jun;Kim, Ji-Hwan;Oh, Young-Seok
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1302-1308
    • /
    • 2003
  • Welding characteristics of austienite 304 stainless steel and SM45C using a continuous wave Nd:YAG laser are experimentally investigated. Laser beam welding is increasingly being used in welding of structural steels. The laser welding process is one of the most advanced manufacturing technologies owing to its high speed and deep penetration. This paper describes the weld ability of SM45C carbon steel and austienite 304 stainless steel for machine structural use by Nd:YAG laser.

  • PDF

Estimation of Fatigue Life in Butt-Welded Zone of SM45C Steel Rod (강 봉(SM45C) 맞대기 용접부의 피로수명 평가)

  • Oh, Byung-Duck;Lee, Yong-Bok
    • Journal of Welding and Joining
    • /
    • v.26 no.3
    • /
    • pp.45-50
    • /
    • 2008
  • SM45C steel rods being used generally for power transmission shafts and machine components was selected and welded by Butt-GMAW(Gas Metal Arc Welding) method. An estimation of fatigue life was studied by constructing S-N curve. Fatigue strength of base metal zone showed higher values than one of weld zone in low cycles between $10^4$ and $10^6$cycles. However, significant decrease in fatigue strength of base metal was found around $10^6$cycles, which were almost same as one of heat affected zone. This decrease was attributed that initial residual stress of the steel rods distributed by drawing process was diminished by continually applied load, and resulted in softening of base metal. The fatigue limit of the weld zone was highest in the boundary between deposited metal zone and heat affected zone, and followed by in the order of deposited metal zone, base metal zone, and heat affected zone. Based on these results, it is revealed that the stress for safety design of machine components using SM45C butt-welded steel rods must be selected within the region of the lowest fatigue limit of heat affected zone.

Laser surface hardening characterization of SM45C (SM45C의 레이저 표면경화특성)

  • Shin Ho-Jun;Yoo Young-Tae;Ahn Dong-Gyu;Im Kiegon
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.246-251
    • /
    • 2005
  • Laser surface hardening is an effective technique used to improve the tribological properties and also to increase the service life of automobile components such as camshafts, crankshatfs, lorry brake drums and gears. High power $CO_2$ lasers and Nd:YAG lasers are employed for localized hardening of materials and hence are of potential application in the automobile industries. The heat is conducted rapidly into the bulk of the specimen causing self-quenching to occur and the formation of martensitic structure. In this investigation, the microstructure features occurring in Nd:YAG laser hardening SM45C steel are discussed with the use of optical microscopic and scanning electron microscopic analysis. Moreover, This paper describes the optimism of the processing parameters for maximum hardened depth of SM45C steel specimens of 3mm thickness by using CW Nd:YAG laser. Travel speed was varied from 0.6m/min to 1.0m/min. The maximum hardness and case depth fo SM45C steel are 780Hv and 0.4mm by laser hardening.

  • PDF

Effects of cooling rate on Microstructure and Bond Strength in WC-Co/Cu/SM45C steel joint (WC-Co/Cu/SM45C강접합에 미세조직 및 접합강도에 미치는 냉각속도의 영향)

  • 정승부;양훈모
    • Journal of Welding and Joining
    • /
    • v.17 no.2
    • /
    • pp.104-111
    • /
    • 1999
  • The interfacial microstructure and bond strength were examined for WC-Co/Cu/SM45C steel join using a nickel-plated copper in vacuum at 1323K for 0.6ks∼3.6ks. After bonding, microstructure in bonding interface was observed by OM(Optical Microscopy), SEM(Scanning Electron Microscopy) and EPMA(Eelectron Probe Micro Analyzer). The oil cooling was carried out at 353K, the cooling rate in air and furnace was 22K/s and 4.4K/s. respectively. It was found that dendritic widths increased with the content of cobalt and bonding times at 1323K. As a whole, bond strength values at the same bonding condition decreased in this order: WC-13wt.%Co/SM45Csteel. WC-8wt.%Co/SM45Csteel and WC-4wt.%Co/SM45Csteel. The bond strength of WC-13wt.%Co/S45C steel joint in oil cooling was 273MPa. This value was greatly higher than those of 125MPa in furnace cooling and 93MPa in air cooling at 1323K for 0.6ks. The bond strength values were found to be closely associated with the content of cobalt in WC-Co and cooling rate.

  • PDF

Surface Hardening of SM45C Steel by CO2 Laser (CO2 레이저를 이용한 SM45C 강의 표면경화)

  • Park, J.S.;Lee, O.Y.;Song, K.H.;Han, Y.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.1
    • /
    • pp.44-52
    • /
    • 1995
  • The specimen for laser hardening have been carried out using SM45C which is coated with black paint or graphite for better absorption. Segmented mirror was used in order to produce a square beam ($10{\times}10mm$) at the surface with a homegeneous intensity distribution across the beam. $CO_2$-Laser power was changed from 2kW to 4kW and transfer velocity was varied from 0.1m/min to 2.0m/min. The maximum hardness and case depth of SM45C steel are 790Hv and 1.5mm by laser hardening. When the surface of specimens was melted during laser hardening. the surface hardness of SM45C steel was decreased. The surface hardness of 2 layer coated specimen(black paint: $15.4{\mu}m$, graphite coating: $9.5{\mu}m$) was increased than that of 1 layer coated specimen. It is desirable to prepare 2 or more coating layer on the steel surface in order to sufficient case depth and hardness in laser hardening. The graphite coating on the specimen surface was obtained more uniform temperature distribution than black paint coating in laser hardening process.

  • PDF

A Study on Friction Welding of SM45C to SCM4 Steel Bars and the Fatigue Properties (SM45C와 SCM4의 마찰용접 및 피로특성에 관한 연구)

  • O, Se-Gyu;Kim, Bu-An;Kim, Seon-Jin;Nam, Sang-Hun
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.112-121
    • /
    • 1988
  • A study on friction welding of carbon steel bar (SM45C) to chrome molybedenum steel bar(SCM4) is examined experimentally through tensile test, hardness test, microstructure test and fatigue test. so, this paper deals with optimizing the welding concitions and analyzing various mechanical properties about friction welds of SM45C to SCM4 steel bars. The results obtained are summarized as follows; 1) For friction welded joints of SM45C to SCM4 steel bars, the total upset(U)increases linearly with an increase of heating time ($t_{1}$) till 6s. 2) The determined optimum welding conditions are heating time ($t_{1}$)2s, upsetting time($t_{2}$), 3s, heating pressure($p_{1}$), 4kgf/$mm^{2}$(39.2MPa), upsetting pressure($p_{2}$, 8kgf/mm$^{2}$(78.4MPa) and rotating speed(N), 2, 000rpm when the total upset(U) is 3.4mm, resulting in a computed relationship between the joint tensile strength .sigma.$_{t}$ (kgf/mm$^{2}$and the total upset U(mm); .sigma.$_{t}$ =$0.21U^{3}$ - $3.38U^{2}$ +17.03U + 66.00 3) As the elongation is increased more and more, the fracture position becomes away from weld interface and the fractures are similar to those of SM45C. Fracture is taken place on SM45C side. 4) The weld interface of two dissimilar materials is mixed strongly, and the heat affected zone is about 2.0mm at SM45C while about 2.7 mm at SCM4 side. Therefore, the welded zone and heat affected zone are very narrow, comparing with those of the joints welded by the other welding methods. 5) The fatigue strengths at N=10$^{6}$ cycles of SM45C, SCM4 and friction welded joints are 23kgf/$mm^{2}$, 33kgf/$mm^{2}$(220.5 MPa), and 22.5kgf/$mm^{2}$(220.5MPa) respectively, and fracture at friction welded joint takes place at the side of SM45C. 6) The hardness of the friction weld interface is 3 times higher than that of base metal. 7) Fatigue strength of friction welded joint is higher than that of base metal. 8) Notch sensitivity factor of friction welded joint is lower than that of base metal.

  • PDF

An Experimental Study on the Fracture Behavior for Flash Butt Welding Zone (Flash Butt 용접부의 파괴거동에 관한 실험적 연구(I))

  • 김용수;신근하;강동명
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.1
    • /
    • pp.65-72
    • /
    • 1992
  • Objective of this research is to evaluate fracture behaviors of fresh-butt welded metal by the acoustic emission technique. The specimens used are medium carbon steel(SM45C), mild steel (SS41) and stainless steel(SUS304), which have different weldability. The similar welding and dissimilar welding processes are considered, in the former SM45C, SS41 and SUS304 are used, in the later the following metals are used SM45C and SS41, SM45C and SUS304 and SS41 and SUS304. The characteristics of fracture in weld metal are eshmated by the tension test with nominal speciemns, the fracture toughness test with compact tension specimens and fractography analysis. The results of tension test show for base metals and similar welding materials that the yield strength and ultimate strength of similar welding materials are increased, the elongation of those are decreased. The weldability of SUS304 is better than that of SM45C and SS41 In similar welding materials. Mechanical properties of dissimilar welding mateiiths we lower than those of similar welding materials. In dissimilar welding materials, the weldability of SM45C and SUS304 is better than that of SM45C and SS41, and also weidability of SS41 and SUS304 is better than SS41 and SM45C. Comparing mechanical properties with AE counts, it is found that AE conuts appeared on a small before the limit load of elasticity(P$_{e}$), and apper greatly near yield strength region in tension test. These results could contribute to the safety analyses and the evaluation of strength for welding structure.e.

  • PDF